当前位置: 首页 > news >正文

数据结构--图

  树具有灵活性,并且存在许多不同的树的应用,但是就树本身而言有一定的局限性,树只能表示层次关系,比如父子关系。而其他的比如兄弟关系只能够间接表示。

推广---  图

图形结构中,数据元素之间的关系是任意的。

一、图的基本概念

二、图的分类

三、图的相关术语

1、顶点的度

无向图:n个顶点找两条,没有方向,

2、路径和路径长度

3.子图

4.图的连通

1)无向图的连通

2)有向图的连通

5.生成树

#不讨论的图:

四、图的存储方法

1、邻接矩阵存储方法

对称矩阵:

一个对称矩阵是指矩阵的主对角线两侧的元素相等。在这个矩阵中,通过观察可以发现对称性质:矩阵的第i行第j列的元素等于第j行第i列的元素。

**无向图的邻接矩阵建图和度数输出(完整代码)

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <string.h>
#define N (100 + 5)
#define INF 0x3f3f3f3f//定义INF为一个十六进制无穷大常量typedef char VexType; //顶点为字符类型
typedef int EdgeType;//邻接矩阵类型为整型typedef struct {int n, m; //n个顶点,m条边VexType vex[N];//一维数组存放所有顶点的数据信息EdgeType edge[N][N];//邻接矩阵(二维数组存放图中所有顶点之间关系的信息)
} adjGraph;//1.邻接矩阵建图
adjGraph createGraph();
//2.输出图的信息(顶点、邻接矩阵)
void print(adjGraph g);
//3.输出图中每个顶点的度数
void printDegree(adjGraph g);int main()
{//1.建图adjGraph g = createGraph();//2.输出图的信息print(g);printDegree(g);return 0;
}adjGraph createGraph()//建图
{adjGraph g;memset(g.edge, 0, sizeof(g.edge));//内存设置函数--创建图的过程中,所有元素初始化为0// g.edge 邻接矩阵//sizeof(g.edge) 数组占用的总字节数scanf("%d%d", &g.n, &g.m);//输入顶点数和边数getchar();//吸收换行符//1.输入n个顶点for (int i = 0; i < g.n; i++) {scanf("%c ", &g.vex[i]);}//2.输入m条边,按照邻接矩阵存图for (int i = 0; i < g.m; i++) {char v1, v2;scanf("\n%c %c", &v1, &v2);//读入当前边的2个顶点int n1 = v1 - 'A', n2 = v2 - 'A';//将顶点字符转换为对应的数组索引。// 假设顶点标签是大写字母'A'、'B'、'C'等,通过将其减去字符'A'的ASCII码值// 可以得到对应的数组索引(0、1、2等)。   g.edge[n1][n2] = g.edge[n2][n1] = 1;//无向图,邻接矩阵对应的n1行n2列和n2n1列都赋值为1(邻接矩阵的对称性)//将对应的邻接矩阵元素设置为1,表示图中对应的顶点之间存在一条边。}return g;
}void print(adjGraph g)
{printf("图有%d个顶点,%d条边\n", g.n, g.m);printf("图的顶点是:");for (int i = 0; i < g.n; i++) {printf("%c ", g.vex[i]);}printf("\n图的邻接矩阵是:\n");for (int i = 0; i < g.n; i++) {for (int j = 0; j < g.n; j++) {printf("%4d", g.edge[i][j]);}printf("\n");}
}void printDegree(adjGraph g)
{printf("图中每个顶点的度数是:");for (int i = 0; i < g.n; i++) {int degree = 0;for (int j = 0; j < g.n; j++) {if (g.edge[i][j] == 1) {degree++;}}printf("%c: %d ", g.vex[i], degree);}printf("\n");
}

输入样例:

**有向图邻接矩阵建图和度数输出(附完整代码)

修改的部分:

  • 将g.edge[n1][n2] = g.edge[n2][n1] = 1; 修改为 g.edge[n1][n2] = 1; 表示从顶点n1指向顶点n2的有向边。
  • 把无向图中的度数输出改成入度和出度输出
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <string.h>
#define N (100 + 5)
#define INF 0x3f3f3f3f//定义INF为一个十六进制无穷大常量typedef char VexType; //顶点为字符类型
typedef int EdgeType;//邻接矩阵类型为整型typedef struct {int n, m; //n个顶点,m条边VexType vex[N];//一维数组存放所有顶点的数据信息EdgeType edge[N][N];//邻接矩阵(二维数组存放图中所有顶点之间关系的信息)
} adjGraph;//1.邻接矩阵建图
adjGraph createGraph();
//2.输出图的信息(顶点、邻接矩阵)
void print(adjGraph g);
//3.输出图中每个顶点的度数
void printDegree(adjGraph g);int main()
{//1.建图adjGraph g = createGraph();//2.输出图的信息print(g);printDegree(g);return 0;
}adjGraph createGraph()//建图
{adjGraph g;memset(g.edge, 0, sizeof(g.edge));//内存设置函数--创建图的过程中,所有元素初始化为0// g.edge 邻接矩阵//sizeof(g.edge) 数组占用的总字节数scanf("%d%d", &g.n, &g.m);//输入顶点数和边数getchar();//吸收换行符//1.输入n个顶点for (int i = 0; i < g.n; i++) {scanf("%c ", &g.vex[i]);}//2.输入m条边,按照邻接矩阵存图for (int i = 0; i < g.m; i++) {char v1, v2;scanf("\n%c %c", &v1, &v2);//读入当前边的2个顶点int n1 = v1 - 'A', n2 = v2 - 'A';//将顶点字符转换为对应的数组索引。// 假设顶点标签是大写字母'A'、'B'、'C'等,通过将其减去字符'A'的ASCII码值// 可以得到对应的数组索引(0、1、2等)。   g.edge[n1][n2] = 1;//有向图,邻接矩阵对应的n1行n2列赋值为1//将对应的邻接矩阵元素设置为1,表示图中对应的顶点之间存在一条边。}return g;
}void print(adjGraph g)
{printf("图有%d个顶点,%d条边\n", g.n, g.m);printf("图的顶点是:");for (int i = 0; i < g.n; i++) {printf("%c ", g.vex[i]);}printf("\n图的邻接矩阵是:\n");for (int i = 0; i < g.n; i++) {for (int j = 0; j < g.n; j++) {printf("%4d", g.edge[i][j]);}printf("\n");}
}void printDegree(adjGraph g)
{printf("图中每个顶点的入度是:\n");for (int i = 0; i < g.n; i++) {int indegree = 0;for (int j = 0; j < g.n; j++) {if (g.edge[j][i] == 1) {indegree++;}}printf("%c: %d \n", g.vex[i], indegree);}printf("图中每个顶点的出度是:\n");for (int i = 0; i < g.n; i++) {int outdegree = 0;for (int j = 0; j < g.n; j++) {if (g.edge[i][j] == 1) {outdegree++;}}printf("%c: %d \n", g.vex[i], outdegree);}}

测试样例:

**有向带权图邻接矩阵建图和度数输出(含完整代码)

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <string.h>
#define N (100 + 5)
#define INF 0x3f3f3f3f//定义INF为一个十六进制无穷大常量typedef char VexType; //顶点为字符类型
typedef int EdgeType;//邻接矩阵类型为整型typedef struct {int n, m; //n个顶点,m条边VexType vex[N];//一维数组存放所有顶点的数据信息EdgeType edge[N][N];//邻接矩阵(二维数组存放图中所有顶点之间关系的信息)
} adjGraph;//1.邻接矩阵建图
adjGraph createGraph();
//2.输出图的信息(顶点、邻接矩阵)
void print(adjGraph g);
//3.输出图中每个顶点的度数
void printDegree(adjGraph g);int main()
{//1.建图adjGraph g = createGraph();//2.输出图的信息print(g);printDegree(g);return 0;
}adjGraph createGraph()//建图
{adjGraph g;memset(g.edge, 0, sizeof(g.edge));//内存设置函数--创建图的过程中,所有元素初始化为0// g.edge 邻接矩阵//sizeof(g.edge) 数组占用的总字节数scanf("%d%d", &g.n, &g.m);//输入顶点数和边数getchar();//吸收换行符//1.输入n个顶点for (int i = 0; i < g.n; i++) {scanf("%c ", &g.vex[i]);}//2.输入m条边,按照邻接矩阵存图 // 将邻接矩阵初始化为INFfor (int i = 0; i < g.m; i++) {for (int j = 0; j < g.m; j++) {g.edge[i][j] = INF;}}for (int i = 0; i < g.m; i++) {char v1, v2;int weight;scanf("\n%c %d %c", &v1, &weight, &v2);//读入当前边的2个顶点int n1 = v1 - 'A', n2 = v2 - 'A';//将顶点字符转换为对应的数组索引。// 假设顶点标签是大写字母'A'、'B'、'C'等,通过将其减去字符'A'的ASCII码值// 可以得到对应的数组索引(0、1、2等)。if (n1 == n2) {g.edge[n1][n2] = 0;}else {g.edge[n1][n2] = weight;g.edge[n2][n1] = INF; // 反方向的边权值设置为INF}}return g;
}void print(adjGraph g)
{printf("图有%d个顶点,%d条边\n", g.n, g.m);printf("图的顶点是:");for (int i = 0; i < g.n; i++) {printf("%c ", g.vex[i]);}printf("\n图的邻接矩阵是:\n");for (int i = 0; i < g.n; i++) {for (int j = 0; j < g.n; j++) {if (i == j) printf("0 ");else if (g.edge[i][j] == INF){printf("INF ");}else  {printf("%-4d", g.edge[i][j]);}}printf("\n");}
}void printDegree(adjGraph g)
{printf("图中每个顶点的入度是:\n");for (int i = 0; i < g.n; i++) {int indegree = 0;for (int j = 0; j < g.n; j++) {if (g.edge[j][i] != 0 && g.edge[j][i] != INF) {indegree++;}}printf("%c: %d \n", g.vex[i], indegree);}printf("图中每个顶点的出度是:\n");for (int i = 0; i < g.n; i++) {int outdegree = 0;for (int j = 0; j < g.n; j++) {if (g.edge[i][j] != 0&& g.edge[i][j] != INF) {outdegree++;}}printf("%c: %d \n", g.vex[i], outdegree);}}

样例:

2、邻接表存储方法

  对每一个顶点建立一个单链表,将同一个顶点发出的边链接在一个称为边链表的单链表中。

头插法:

五、图的遍历

六、最小生成树

      

七、最短路径问题

八、AOV网与拓扑排序

九、AOE网与关键路径

http://www.lryc.cn/news/263098.html

相关文章:

  • AXure的情景交互
  • 数据库操作习题12.12
  • Redis之INCR命令,通常用于统计网站访问量,文章访问量,分布式锁
  • window运行celery报错
  • 玩转Docker(五):网络
  • 选择合适教育管理软件:必须考虑的10个关键问题
  • 前端不同架构的分层设计
  • android系统镜像文件
  • 相位的重要性
  • (三十三)补充Python经典面试题(吸收高级编程特性)
  • SQL进阶理论篇(四):索引的结构原理(B树与B+树)
  • springMVC-模型数据的处理
  • 计算机组成原理-微指令的设计与微程序控制单元的设计
  • PyTorch机器学习与深度学习
  • 羊奶vs牛奶,羊大师告诉你谁是更营养的选择?
  • 机器学习之线性回归(Linear Regression)
  • ChatGPT与ArcGIS PRO 如何结合,打造一个全新的工作流程
  • 【深度学习】对比学习的损失函数
  • 哈夫曼解码
  • Excel小技能:excel如何将数字20231211转化成指定日期格式2023/12/11
  • Selenium自动化测试框架(超详细总结分享)
  • STM32 DAC+串口
  • SolidWorks二次开发 C#-读取基于Excel的BOM表信息
  • maui中实现加载更多 RefreshView跟ListView(2)
  • win10环境下git安装和基础操作
  • 将yolo格式转化为voc格式:txt转xml(亲测有效)
  • 字符串 - 541.反转字符串II(C#和C实现)
  • 机器视觉技术与应用实战(开运算、闭运算、细化)
  • 云原生之深入解析云原生架构的日志监控
  • 基于hfl/rbt3模型的情感分析学习研究——文本挖掘