当前位置: 首页 > news >正文

Nougat:结合光学神经网络,引领学术PDF文档的智能解析、挖掘学术论文PDF的价值

Nougat:结合光学神经网络,引领学术PDF文档的智能解析、挖掘学术论文PDF的价值

这是Nougat的官方存储库,Nougat是一种学术文档PDF解析器,可以理解LaTeX数学和表格。

Project page: https://facebookresearch.github.io/nougat/

1.安装

From pip:

pip install nougat-ocr

From repository:

pip install git+https://github.com/facebookresearch/nougat

Note, on Windows: If you want to utilize a GPU, make sure you first install the correct PyTorch version. Follow instructions here

如果您想从API调用模型或生成数据集,则会有额外的依赖项。
安装通过

pip install "nougat-ocr[api]" or pip install "nougat-ocr[dataset]"

1.2 获取PDF的预测

1.2.1 CLI

To get predictions for a PDF run

$ nougat path/to/file.pdf -o output_directory

目录或文件的路径(其中每行都是PDF的路径)也可以作为位置参数传递

$ nougat path/to/directory -o output_directory
usage: nougat [-h] [--batchsize BATCHSIZE] [--checkpoint CHECKPOINT] [--model MODEL] [--out OUT][--recompute] [--markdown] [--no-skipping] pdf [pdf ...]positional arguments:pdf                   PDF(s) to process.options:-h, --help            show this help message and exit--batchsize BATCHSIZE, -b BATCHSIZEBatch size to use.--checkpoint CHECKPOINT, -c CHECKPOINTPath to checkpoint directory.--model MODEL_TAG, -m MODEL_TAGModel tag to use.--out OUT, -o OUT     Output directory.--recompute           Recompute already computed PDF, discarding previous predictions.--full-precision      Use float32 instead of bfloat16. Can speed up CPU conversion for some setups.--no-markdown         Do not add postprocessing step for markdown compatibility.--markdown            Add postprocessing step for markdown compatibility (default).--no-skipping         Don't apply failure detection heuristic.--pages PAGES, -p PAGESProvide page numbers like '1-4,7' for pages 1 through 4 and page 7. Only works for single PDFs.

The default model tag is 0.1.0-small. If you want to use the base model, use 0.1.0-base.

$ nougat path/to/file.pdf -o output_directory -m 0.1.0-base

In the output directory every PDF will be saved as a .mmd file, the lightweight markup language, mostly compatible with Mathpix Markdown (we make use of the LaTeX tables).

Note: On some devices the failure detection heuristic is not working properly. If you experience a lot of [MISSING_PAGE] responses, try to run with the --no-skipping flag. Related: #11, #67

1.2.2 API

With the extra dependencies you use app.py to start an API. Call

$ nougat_api

通过向http://127.0.0.1:8503/ predict/发出POST请求来获得PDF文件的预测。它还接受参数“start”和“stop”,以限制计算选择页码(包括边界)。

响应是一个带有文档标记文本的字符串。

curl -X 'POST' \'http://127.0.0.1:8503/predict/' \-H 'accept: application/json' \-H 'Content-Type: multipart/form-data' \-F 'file=@<PDFFILE.pdf>;type=application/pdf'

To use the limit the conversion to pages 1 to 5, use the start/stop parameters in the request URL: http://127.0.0.1:8503/predict/?start=1&stop=5

2.Dataset

2.1 生成数据集

To generate a dataset you need

  1. A directory containing the PDFs
  2. A directory containing the .html files (processed .tex files by LaTeXML) with the same folder structure
  3. A binary file of pdffigures2 and a corresponding environment variable export PDFFIGURES_PATH="/path/to/binary.jar"

Next run

python -m nougat.dataset.split_htmls_to_pages --html path/html/root --pdfs path/pdf/root --out path/paired/output --figure path/pdffigures/outputs

Additional arguments include

ArgumentDescription
--recomputerecompute all splits
--markdown MARKDOWNMarkdown output dir
--workers WORKERSHow many processes to use
--dpi DPIWhat resolution the pages will be saved at
--timeout TIMEOUTmax time per paper in seconds
--tesseractTesseract OCR prediction for each page

Finally create a jsonl file that contains all the image paths, markdown text and meta information.

python -m nougat.dataset.create_index --dir path/paired/output --out index.jsonl

For each jsonl file you also need to generate a seek map for faster data loading:

python -m nougat.dataset.gen_seek file.jsonl

The resulting directory structure can look as follows:

root/
├── images
├── train.jsonl
├── train.seek.map
├── test.jsonl
├── test.seek.map
├── validation.jsonl
└── validation.seek.map

Note that the .mmd and .json files in the path/paired/output (here images) are no longer required.
This can be useful for pushing to a S3 bucket by halving the amount of files.

2.2Training

To train or fine tune a Nougat model, run

python train.py --config config/train_nougat.yaml

2.3 Evaluation

Run

python test.py --checkpoint path/to/checkpoint --dataset path/to/test.jsonl --save_path path/to/results.json

To get the results for the different text modalities, run

python -m nougat.metrics path/to/results.json

2.4 FAQ

  • Why am I only getting [MISSING_PAGE]?

    Nougat was trained on scientific papers found on arXiv and PMC. Is the document you’re processing similar to that?
    What language is the document in? Nougat works best with English papers, other Latin-based languages might work. Chinese, Russian, Japanese etc. will not work.
    If these requirements are fulfilled it might be because of false positives in the failure detection, when computing on CPU or older GPUs (#11). Try passing the --no-skipping flag for now.

  • Where can I download the model checkpoint from.

    They are uploaded here on GitHub in the release section. You can also download them during the first execution of the program. Choose the preferred preferred model by passing --model 0.1.0-{base,small}

参考链接:
https://github.com/facebookresearch/nougat

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

http://www.lryc.cn/news/259362.html

相关文章:

  • 涉密网络的IP查询防护策略
  • 基础算法(1):排序(1):选择排序
  • GeoTrust OV证书
  • 第一个“hello Android”程序
  • docker-compose安装nacos和msql
  • AnythingLLM:基于RAG方案构专属私有知识库(开源|高效|可定制)
  • 常见的工作流编排引擎
  • 期末总复习(重点!!!)
  • input 获取焦点后样式的修改
  • 持续集成交付CICD:Jenkins使用GitLab共享库实现自动上传前后端项目Nexus制品
  • 50mA、24V、超低 IQ、低压降稳压器
  • 【Python测试开发】文件上传操作
  • 深兰科技AI医疗健康产品获3000台采购订单
  • 金鸣表格文字识别的图片转word,模块不同,效果有何差异?
  • Qt Creator设置IDE的字体、颜色、主题样式
  • SpringBootWeb入门、HTTP协议、Web服务器-Tomcat
  • 【Jenkins】Centos环境安装Jenkins(通过rpm安装)
  • 华为数通---配置基本QinQ示例
  • 利用poi实现将数据库表字段信息导出到word中
  • 深入浅出分析kafka客户端程序设计 ----- 生产者篇----万字总结
  • 粗到细语义(Coarse-to-Fine Semantics)
  • 小程序开发实战案例四 | 小程序标题栏如何设置
  • Flutter在Visual Studio Code上首次创建运行应用
  • 如何用ChatGPT分析恶意软件?
  • 【Axure高保真原型】能增删改的树形表格
  • 前端打包工具之Webpack5
  • linux设置环境变量
  • vue中对pdf文件和路径的处理
  • Socks5与代理IP技术探析:构建安全高效的网络通信
  • 【lesson13】MySQL表的基本操作之create(创建),update(更新)和replace(替换)