当前位置: 首页 > news >正文

reinforce 跑 CartPole-v1

gym版本是0.26.1
CartPole-v1的详细信息,点链接里看就行了。
修改了下动手深度强化学习对应的代码。

然后这里 J ( θ ) J(\theta) J(θ)梯度上升更新的公式是用的不严谨的,这个和王树森书里讲的严谨公式有点区别。

代码

import gym
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import rl_utils # 这个要下载源码,然后放到同个文件目录下,链接在上面给出了
from d2l import torch as d2l # 这个是动手深度学习的库, pip/conda install d2l 就好了class PolicyNet(nn.Module):def __init__(self, state_dim, hidden_dim, action_dim):super().__init__()self.fc1 = nn.Linear(state_dim, hidden_dim)self.fc2 = nn.Linear(hidden_dim, action_dim)def forward(self, X):X = F.relu(self.fc1(X))return F.softmax(self.fc2(X),dim=1)class REINFORCE:def __init__(self, state_dim, hidden_dim, action_dim, learning_rate, gamma, device):self.policy_net = PolicyNet(state_dim, hidden_dim, action_dim).to(device)self.optimizer = torch.optim.Adam(self.policy_net.parameters(), lr = learning_rate)self.gamma = gamma # 折扣因子self.device = devicedef take_action(self, state): # 根据动作概率分布随机采样state = torch.tensor(np.array([state]),dtype=torch.float).to(self.device)probs = self.policy_net(state)action_dist = torch.distributions.Categorical(probs)action = action_dist.sample()return action.item()def update(self, transition_dict):  # 公式用的是简化推导reward_list = transition_dict['rewards']state_list = transition_dict['states']action_list = transition_dict['actions']G = 0self.optimizer.zero_grad()for i in reversed(range(len(reward_list))):  # 从最后一步算起reward = reward_list[i]state = torch.tensor(np.array([state_list[i]]), dtype=torch.float).to(self.device)action = torch.tensor([action_list[i]]).reshape(-1,1).to(self.device)log_prob = torch.log(self.policy_net(state).gather(1, action))G = self.gamma * G + reward loss = -log_prob * G  # 因为梯度更新是减的,所以取个负号loss.backward()self.optimizer.step()
lr = 1e-3
num_episodes = 1000
hidden_dim = 128
gamma = 0.98
device = d2l.try_gpu()env_name="CartPole-v1"
env = gym.make(env_name)
print(f"_max_episode_steps:{env._max_episode_steps}")
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.nagent = REINFORCE(state_dim, hidden_dim, action_dim, lr, gamma, device)
return_list = []
for i in range(10):with tqdm(total=int(num_episodes/10), desc=f'Iteration {i}') as pbar:for i_episode in range(int(num_episodes/10)):episode_return = 0transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}state = env.reset()[0]done, truncated= False, Falsewhile not done and not truncated :  # 主要是这部分和原始的有点不同action = agent.take_action(state)next_state, reward, done, truncated, info = env.step(action)transition_dict['states'].append(state)transition_dict['actions'].append(action)transition_dict['next_states'].append(next_state)transition_dict['rewards'].append(reward)transition_dict['dones'].append(done)state = next_stateepisode_return += rewardreturn_list.append(episode_return)agent.update(transition_dict)if (i_episode+1) % 10 == 0:pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode+1), 'return': '%.3f' % np.mean(return_list[-10:])})pbar.update(1)episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title(f'REINFORCE on {env_name}')
plt.show()mv_return = rl_utils.moving_average(return_list, 9)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title(f'REINFORCE on {env_name}')
plt.show()

我是在jupyter里直接跑的,结果如下所示。

http://www.lryc.cn/news/257448.html

相关文章:

  • 【VRTK】【VR开发】【Unity】13-攀爬
  • 华为OD机试真题-求幸存数之和-2023年OD统一考试(C卷)
  • python pyaudio实时读取音频数据并展示波形图
  • 【算法系列篇】递归、搜索和回溯(二)
  • Ubuntu下安装SDL
  • 创建vue项目:vue脚手架安装、vue-cli安装,vue ui界面创建vue工程(vue2/vue3),安装vue、搭建vue项目开发环境(保姆级教程二)
  • 【3】密评-物理和环境安全测评
  • 笨爸爸工房,我们在校园|“小鲁班”,铸未来
  • RPC 集群,gRPC 广播和组播
  • OpenSSL SSL_read: Connection was reset, errno 10054
  • 【springboot】整合redis和定制化
  • HarmonyOS鸿蒙操作系统架构开发
  • 共创共赢|美创科技获江苏移动2023DICT生态合作“产品共创奖”
  • 深度学习——第3章 Python程序设计语言(3.5 Python类和对象)
  • 【原创】【一类问题的通法】【真题+李6卷6+李4卷4(+李6卷5)分析】合同矩阵A B有PTAP=B,求可逆阵P的策略
  • 代码随想录算法训练营第六十天 | 84.柱状图中最大的矩形
  • C#结合JavaScript实现多文件上传
  • STM32——继电器
  • 性能监控体系:InfluxDB Grafana Prometheus
  • CS106L2023 and CS106B 环境配置(详细教程)
  • Docker-多容器应用
  • Golang导入导出Excel表格
  • 基于Maven的Spring Boot应用版本号获取解析
  • LLM微调(二)| 微调LLAMA-2和其他开源LLM的两种简单方法
  • AVP对纵向控制ESP(Ibooster)的需求规范
  • 小模型学习(1)-人脸识别
  • sublime Text使用
  • 基于深度学习的yolov7植物病虫害识别及防治系统
  • Leetcode 2963. Count the Number of Good Partitions
  • C语言动态内存经典笔试题分析