当前位置: 首页 > news >正文

2023新优化应用:RIME-CNN-LSTM-Attention超前24步多变量回归预测算法

程序平台:适用于MATLAB 2023版及以上版本。

霜冰优化算法是2023年发表于SCI、中科院二区Top期刊《Neurocomputing》上的新优化算法,现如今还未有RIME优化算法应用文献哦。RIME主要对霜冰的形成过程进行模拟,将其巧妙地应用于算法搜索领域。

该文献对RIME进行了定性分析实验,以阐明该算法在寻找最优解过程中的特点。然后,对RIME在经典的IEEE CEC2017和最新的IEEE CEC2022测试集中的42个函数进行了性能测试。将提出的算法与10个经典算法和10个最新改进算法进行比较,以验证其性能优势。此外,文献还设计了RIME的参数分析实验,以探讨该算法在运行不同参数和处理不同问题方面的潜力。最后,将RIME应用于五个实际工程问题,以验证其在实际问题中的有效性和优越性。

①通过模拟软霜颗粒的运动,作者提出了一种全新的算法搜索策略,即软霜搜索策略。这个策略的灵感来自于对软霜颗粒在运动中的特性的模拟。

②同时,文中还模拟了硬霜颗粒之间的交叉行为,提出了硬霜穿刺机制,以更好地利用这一算法。这个穿刺机制通过模拟硬霜颗粒相互交叉的方式,为算法引入了一种新的优化手段。

③最后,在元启发式算法的选择机制方面进行了改进,引入了正向贪婪选择机制。通过结合软霜搜索策略、硬霜穿刺机制和正向贪婪选择机制构建RIME算法。

我们利用该高创新算法对我们的CNN-LSTM-Attention时序和空间特征结合-融合注意力机制的回归预测程序代码中的超参数进行优化。

代码说明:霜冰优化算法(RIME)、卷积神经网络(CNN)和长短期记忆网络(LSTM)融合多头自注意力机制(Multihead SelfAttention)的超前24步多变量时间序列回归预测算法。

功能:

1、多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。

2、通过霜冰优化算法优化学习率、卷积核大小、神经元个数3个关键参数,以最小MAPE为目标函数。

3、提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线。

4、提供MAPE、RMSE、MAE等计算结果展示。

适用领域:

风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

数据集格式:

前一天18个气象特征,采样时间为24小时,输出为第二天的24小时的功率出力,也就是18×24输入,1×24输出,一共有75个这样的样本。

预测值与实际值对比结果:

训练特征可视化:

训练误差曲线的极坐标形式(误差由内到外越来越接近0):

适应度曲线:

部分核心代码:

function [Best_rime_rate, Best_pos, Convergence_curve, bestPred, bestNet, bestInfo] = RIME(SearchAgents_no, Max_iter, lb, ub, dim, fobj)% 初始化位置Best_rime = zeros(1, dim);Best_rime_rate = inf; % 用于最大化问题,请将此值改为 -inffor i = 1:dimRimepop(:, i) = lb(i) + rand(SearchAgents_no, 1) .* (ub(i) - lb(i));   % 初始种群endLb = lb .* ones(1, dim); % 下边界Ub = ub .* ones(1, dim); % 上边界it = 1; % 迭代次数Convergence_curve = zeros(1, Max_iter);Rime_rates = zeros(1, SearchAgents_no); % 初始化适应度值newRime_rates = zeros(1, SearchAgents_no);W = 5; % 软霜冰参数,在论文第4.3.1节中有详细讨论% 计算初始位置的适应度值for i = 1:SearchAgents_no[Rime_rates(1, i),Value{i},Net{i},Info{i}] = fobj(Rimepop(i, :)); % 计算每个搜索体的适应度值% 进行贪婪选择if Rime_rates(1, i) < Best_rime_rateBest_rime_rate = Rime_rates(1, i);Best_rime = Rimepop(i, :);bestPred = Value{i};bestNet = Net{i};bestInfo = Info{i};endend% 主循环while it <= Max_iterRimeFactor = (rand - 0.5) * 2 * cos((pi * it / (Max_iter / 10))) * (1 - round(it * W / Max_iter) / W); % 公式(3),(4),(5)的参数E = (it / Max_iter)^0.5; % 公式(6)newRimepop = Rimepop; % 记录新的种群normalized_rime_rates = normr(Rime_rates); % 公式(7)的参数for i = 1:SearchAgents_nofor j = 1:dim% 软霜冰搜索策略r1 = rand();if r1 < EnewRimepop(i, j) = Best_rime(1, j) + RimeFactor * ((Ub(j) - Lb(j)) * rand + Lb(j)); % 公式(3)end% 硬霜冰穿刺机制r2 = rand();if r2 < normalized_rime_rates(i)newRimepop(i, j) = Best_rime(1, j); % 公式(7)endendendfor i = 1:SearchAgents_no% 边界吸收Flag4ub = newRimepop(i, :) > ub;Flag4lb = newRimepop(i, :) < lb;newRimepop(i, :) = (newRimepop(i, :) .* ~(Flag4ub + Flag4lb)) + ub .* Flag4ub + lb .* Flag4lb;[newRime_rates(1, i),newValue{i},newNet{i},newInfo{i}] = fobj(newRimepop(i, :));% 正向贪婪选择机制if newRime_rates(1, i) < Rime_rates(1, i)Rime_rates(1, i) = newRime_rates(1, i);Rimepop(i, :) = newRimepop(i, :);Value{i} = newValue{i};Net{i} = newNet{i};Info{i} = newInfo{i};完整代码:https://mbd.pub/o/bread/mbd-ZZealpds

部分图片来源于网络,侵权联系删除!

关注小编会不定期推送高创新型、高质量的学习资料、文章程序代码,为你的科研加油助力~

http://www.lryc.cn/news/254630.html

相关文章:

  • RNN:文本生成
  • Rust UI开发(五):iced中如何进行页面布局(pick_list的使用)?(串口调试助手)
  • Linux学习笔记2
  • 数据结构算法-插入排序算法
  • 安装Kuboard管理K8S集群
  • 网络安全行业大模型调研总结
  • Linux AMH服务器管理面板本地安装与远程访问
  • Sharding-Jdbc(3):Sharding-Jdbc分表
  • zookeeper集群 +kafka集群
  • 2022年全国大学生数据分析大赛医药电商销售数据分析求解全过程论文及程序
  • Python版本与opencv版本的对应关系
  • 【开源视频联动物联网平台】LiteFlow
  • 家用智能门锁——智能指纹锁方案
  • Qt6 QRibbon 一键美化Qt界面
  • JAVA IO:NIO
  • Python 在控制台打印带颜色的信息
  • SQL Server 数据库,创建触发器避免数据被更改
  • C语言实现植物大战僵尸(完整版)
  • 基于YOLOv8深度学习的火焰烟雾检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
  • 【C++】手撕string思路梳理
  • 【数据结构和算法】确定两个字符串是否接近
  • [足式机器人]Part2 Dr. CAN学习笔记-Ch0-1矩阵的导数运算
  • 如何让软文更具画面感,媒介盒子分享
  • Hadoop学习笔记(HDP)-Part.19 安装Kafka
  • Arrays类练习 - Java
  • Java多线程:代码不只是在‘Hello World‘
  • 使用PCSS实现的实时阴影效果
  • 用于缓存一些固定名称的小组件
  • Python 读取电子发票PDF 转成Excel
  • 我的项目问题