当前位置: 首页 > news >正文

吴恩达《机器学习》8-3->8-4:模型表示I、模型表示II

8.3、模型表示I

一、大脑神经网络的基本原理

为了构建神经网络模型,首先需要理解大脑中的神经网络是如何运作的。每个神经元都可以被看作是一个处理单元或神经核,它包含多个输入(树突)和一个输出(轴突)。神经网络是由大量神经元相互连接,并通过电脉冲进行交流的复杂网络。

神经元之间利用微弱的电流进行通信,这些电流被称为动作电位。当神经元要传递消息时,通过轴突发送微弱电流给其他神经元,形成一种信息传递的链条。这与人类思考的模型相似,其中神经元通过计算将收到的消息传递给其他神经元,也是感觉和肌肉运动的基本原理。

二、神经网络模型的构建

神经网络模型建立在许多神经元之上,每个神经元都是一个个学习模型,也被称为激活单元。这些激活单元采纳一些特征作为输入,并根据自身的模型提供一个输出。一个示例是以逻辑回归模型作为学习模型的神经元,其中参数被称为权重。

我们设计了一个类似于神经元的神经网络,包括输入单元、中间单元和输出单元。输入单元接收原始数据,中间单元进行数据处理,最后输出单元计算 ℎ𝜃(x)。

三、神经网络的层级结构和标记法

神经网络模型是由许多逻辑单元按照不同层级组织而成的网络。这包括输入层、隐藏层和输出层。在模型表示中,引入了标记法来帮助描述神经网络的结构。例如,𝑎𝑖(𝑗) 代表第 j 层的第 i 个激活单元,𝜃(𝑗) 代表从第 j 层映射到第 j + 1 层的权重矩阵。

四、前向传播算法

为了将训练集输入神经网络进行学习,我们使用了前向传播算法。该算法从左到右逐步计算神经网络的输出,通过一系列计算得到最终结果。具体而言,通过矩阵表示,我们将整个模型的运算过程整合为一个简洁的式子:𝜃 ⋅ 𝑋 = 𝑎。

这一学习内容为构建神经网络模型提供了基础,我们了解了神经网络的基本结构和运作原理。在模型表示的下一部分,我们将深入学习神经网络的训练过程和反向传播算法。

8.4、模型表示II

一、向量化计算和前向传播

二、神经网络与 Logistic Regression 的关系

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

http://www.lryc.cn/news/232341.html

相关文章:

  • 数据结构-二叉树力扣题
  • node 第十八天 中间件express-session实现会话密钥
  • 【机器学习基础】机器学习入门(1)
  • 赶快来!程序员接单必须知道的六大注意事项!!!
  • 【C++】日期类实现,与日期计算相关OJ题
  • 前端404页面的制作
  • 深兰科技轮腿家用AI机器人荣获“2023年度城市更新科创大奖”
  • 669.修剪二叉树
  • 论文绘图-机器学习100张模型图
  • PHP项目学习笔记-萤火商城-增加一个模块(表涉及到的操作和文件)
  • 如何用Java设计自动售货机?
  • JAVA数据代码示例
  • github常用搜索指令
  • 为什么esp8266刷入了固件,无法接受AT指令
  • Scala---字符串、集合
  • Power Automate-当收到HTTP请求时触发流程
  • 学习c#的第十四天
  • 6.jvm中对象创建流程与内存分配
  • 算法--搜索与图
  • ROS 文件系统
  • 车载通信与DDS标准解读系列(1):DDS-RPC
  • 通过构造树形结构介绍map的用法
  • 代码随想录算法训练营Day 53 || 1143.最长公共子序列、1035.不相交的线、53. 最大子序和
  • Oracle JDBC数据库驱动程序介绍
  • scipy实现单因素方差分析
  • 深度学习实战59-NLP最核心的模型:transformer的搭建与训练过程详解,手把手搭建与跑通
  • 一阶滤波器(一阶巴特沃斯滤波器)
  • .net core中前端vue HTML5 History 刷新页面404问题
  • 【152.乘积最大子数组】
  • 如何开发OA系统场景的系统架构