当前位置: 首页 > news >正文

代码随想录算法训练营Day 53 || 1143.最长公共子序列、1035.不相交的线、53. 最大子序和

1143.最长公共子序列

力扣题目链接

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

  • 输入:text1 = "abcde", text2 = "ace"
  • 输出:3
  • 解释:最长公共子序列是 "ace",它的长度为 3。

示例 2:

  • 输入:text1 = "abc", text2 = "abc"
  • 输出:3
  • 解释:最长公共子序列是 "abc",它的长度为 3。

示例 3:

  • 输入:text1 = "abc", text2 = "def"
  • 输出:0
  • 解释:两个字符串没有公共子序列,返回 0。

提示:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000 输入的字符串只含有小写英文字符。

思路

  1. 定义状态:创建一个二维数组 dp,其中 dp[i][j] 表示 text1 的前 i 个字符和 text2 的前 j 个字符的最长公共子序列的长度。

  2. 状态转移

    • 如果 text1[i-1] == text2[j-1],则 dp[i][j] = dp[i-1][j-1] + 1
    • 否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])
  3. 初始化dp[0][j]dp[i][0] 都应初始化为 0,因为空字符串与任何字符串的最长公共子序列长度都是 0。

  4. 填充表格:按行或按列填充整个 dp 表格。

  5. 返回结果dp[text1.length][text2.length] 就是最长公共子序列的长度。

class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:m, n = len(text1), len(text2)dp = [[0] * (n + 1) for _ in range(m + 1)]for i in range(1, m + 1):for j in range(1, n + 1):if text1[i - 1] == text2[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[m][n]

1035.不相交的线

力扣题目链接

我们在两条独立的水平线上按给定的顺序写下 A 和 B 中的整数。

现在,我们可以绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。

以这种方法绘制线条,并返回我们可以绘制的最大连线数。

1035.不相交的线

思路

  1. 定义状态:创建一个二维数组 dp,其中 dp[i][j] 表示数组 A 的前 i 个元素和数组 B 的前 j 个元素可以形成的最大连线数。

  2. 状态转移

    • 如果 A[i-1] == B[j-1],则可以在这两个元素之间绘制一条线,因此 dp[i][j] = dp[i-1][j-1] + 1
    • 否则,不能在 A[i-1]B[j-1] 之间绘制线,所以 dp[i][j] = max(dp[i-1][j], dp[i][j-1])
  3. 初始化dp[0][j]dp[i][0] 都应初始化为 0,因为当任一数组为空时,最大连线数为 0。

  4. 填充表格:按行或按列顺序填充 dp 表格。

  5. 返回结果dp[A的长度][B的长度] 就是可以绘制的最大连线数。

class Solution:def maxUncrossedLines(self, A: List[int], B: List[int]) -> int:m, n = len(A), len(B)dp = [[0] * (n + 1) for _ in range(m + 1)]for i in range(1, m + 1):for j in range(1, n + 1):if A[i - 1] == B[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[m][n]

53. 最大子序和

力扣题目链接(opens new window)

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

  • 输入: [-2,1,-3,4,-1,2,1,-5,4]
  • 输出: 6
  • 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

思路

  1. 定义状态:创建一个数组 dp,其中 dp[i] 表示以 nums[i] 结尾的最大子序和。

  2. 状态转移:对于每个 i,有两种情况:

    • nums[i] 加入前面的子数组中,这种情况下最大子序和是 dp[i-1] + nums[i]
    • nums[i] 开始一个新的子数组,这种情况下最大子序和是 nums[i] 自己。 因此,dp[i] = max(dp[i-1] + nums[i], nums[i])
  3. 初始化dp[0] 应该初始化为 nums[0],因为最开始的最大子序和就是数组的第一个元素。

  4. 结果:遍历 dp 数组,找出最大值,即为最大子序和。

class Solution:def maxSubArray(self, nums: List[int]) -> int:n = len(nums)dp = nums.copy()for i in range(1, n):dp[i] = max(dp[i - 1] + nums[i], nums[i])return max(dp)

http://www.lryc.cn/news/232317.html

相关文章:

  • Oracle JDBC数据库驱动程序介绍
  • scipy实现单因素方差分析
  • 深度学习实战59-NLP最核心的模型:transformer的搭建与训练过程详解,手把手搭建与跑通
  • 一阶滤波器(一阶巴特沃斯滤波器)
  • .net core中前端vue HTML5 History 刷新页面404问题
  • 【152.乘积最大子数组】
  • 如何开发OA系统场景的系统架构
  • spring boot 集成 RedisSearch 和 RedisJSON
  • 【Kotlin精简】第8章 协程
  • 【MATLAB源码-第79期】基于蚯蚓优化算法(EOA)的栅格路径规划,输出做短路径图和适应度曲线。
  • RPC实现简单解析
  • 【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr
  • WMS仓储管理系统与TMS系统整合后的优势
  • 测试的专用
  • sqli-labs(Less-4) extractvalue闯关
  • Kafka简单汇总
  • 任务交给谁?委派模式告诉你最佳选择!
  • 【JavaEE】Servlet(创建Maven、引入依赖、创建目录、编写及打包、部署和验证、smart Tomcat)
  • 降低城市内涝风险,万宾科技内涝积水监测仪的作用
  • 水库大坝安全监测预警系统的重要作用
  • 【AI视野·今日NLP 自然语言处理论文速览 第六十五期】Mon, 30 Oct 2023
  • 腾讯云轻量服务器购买优惠,腾讯云轻量应用服务器优惠购买方法
  • zookeeper学习记录
  • C语言--字符串详解(多角度分析,什么是字符串?字符串如何存储?字符串如何应用?字符串常用的库函数有哪些?)
  • 【文件包含】任意文件包含的理解
  • 【ERROR】ERR_PNPM_NO_IMPORTER_MANIFEST_FOUND No package.json
  • Gitlab CI如何实现安全获取ssh-key拉取依赖项目,打包成品
  • C#匿名方法介绍
  • Linux C/C++全栈开发知识图谱(后端/音视频/游戏/嵌入式/高性能网络/存储/基础架构/安全)
  • pyTorch Hub 系列#2:VGG 和 ResNet