当前位置: 首页 > news >正文

【DP】背包问题全解

一.简介

DP(动态规划)背包问题是一个经典的组合优化问题,通常用来解决资源分配的问题,如货物装载、投资组合优化等。问题的核心思想是在有限的资源约束下,选择一组物品以最大化某种价值指标,通常是总价值或总利润。


二.闫氏DP分析法


三.01背包

(1)概念

每个物品只有一个,要么选,要么不选

(2)状态转移方程

f[i][j] = max(f[i-1][j] , f[i-1][j-v]+w)

(3)经典例题

P1048 [NOIP2005 普及组] 采药 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

(4)代码

#include<bits/stdc++.h>
#define N 1010
using namespace std;
int f[N][N];
int w[N],c[N];
int bag,n;
int main(){scanf("%d%d",&bag,&n);for(int i=1;i<=n;i++) scanf("%d%d",&w[i],&c[i]);for(int i=1;i<=n;i++){for(int j=0;j<=bag;j++){f[i][j]=f[i-1][j];if(j>=w[i]){f[i][j]=max(f[i][j],f[i-1][j-w[i]]+c[i]);}}}printf("%d",f[n][bag]);return 0;
}

(5)滚动数组优化 

#include<bits/stdc++.h>
#define N 1010
using namespace std;
int f[N];
int n,m;
int main()
{scanf("%d%d", &m, &n);for(int i = 1; i <= n; i ++ ){int w,c;scanf("%d%d", &w, &c);for(int j = m; j >=w ; j -- ){ f[j] = max(f[j], f[j-w] + c);}}printf("%d", f[m]);return 0;
}


四.完全背包

(1)概念

每个物品有无限个

(2)例题

1023. 买书 - AcWing题库

(3)闫氏DP分析法

(4)状态转移方程推导

f[i][j] = f[i - 1][j] + f[i - 1][j - v * 1]  + f[i - 1][j - v * 2] + ...... +  f[i -1][j - v * k];

f[i][j - v] =            f[i - 1][j - v * 1]  + f[i - 1][j - v * 2] + ...... +  f[i - 1][j - v * k];

所以推出:f[i][j] = f[i - 1][j] + f[i][j - v];

再使用滚动数组简化,就得出结论,其实就是01背包,内循环从大到小变成了从小到大!

(5)参考代码

#include<bits/stdc++.h>
#define N 1010
using namespace std;
int f[N];
int n;
int a[5] = {0, 10, 20, 50, 100};int main(){scanf("%d", &n);f[0] = 1; for(int i = 1; i <= 4; i ++ ){for(int j = a[i]; j <= n; j ++ ){f[j] += f[j - a[i]];}}	printf("%d", f[n]);return 0;
}


五.多重背包

(1)概念

物品有一定的数量

(2)实现方式

1.朴素版(易)  2.二进制优化版(中)  3.单调队列优化版(难)

(3)经典例题

1019. 庆功会 - AcWing题库

(3)朴素版

#include<bits/stdc++.h>
#define N 6010
using namespace std;
int f[N];
int n, m;
int main(){scanf("%d%d", &n, &m); //n个物品,m容量 for(int i = 1;i <= n; i ++ ){int v, w, s; //容量,价值,数量 scanf("%d%d%d", &v, &w, &s);for(int j = m; j >= v; j -- ){ //枚举容量 for(int k = 1;k <= s && k * v <= j; k ++ ){ //再枚举数量 f[j] = max(f[j], f[j - k * v] + w * k);}}}printf("%d", f[m]);return 0;
}

 (4)二进制优化版

#include<bits/stdc++.h>
#define N 6010
using namespace std;
int f[N];
int n,m;
int main(){scanf("%d%d", &n, &m);for(int i = 1; i <= n ; i ++ ){int v, w, s;scanf("%d%d%d", &v, &w, &s);for(int k = 1; k <= s; k *= 2) //二进制分解{for(int j = m; j >= k * v; j --)f[j] = max(f[j], f[j - k * v] + k * w);s -= k;}if(s) //余下的{for(int j = m; j >= s * v; j --)f[j] = max(f[j], f[j - s * v] + s * w);}}printf("%d", f[m]);return 0;
}

六.分组背包

(1)概念

每组物品有若干个,同一组内的物品最多只能选一个。

和多重背包十分相似,也简单。难得写了,copy一下,哈哈。


七.混合背包

(1)概念

就是把完全背包,多重背包,01背包混合起来,分类讨论即可,代码很好看懂。

(2)例题

7. 混合背包问题 - AcWing题库

(3)参考代码

#include<bits/stdc++.h>
#define N 1010
using namespace std;
int f[N];
int n,m;
int main()
{scanf("%d%d", &n, &m);int v, w, s;for(int i = 1; i <= n; i ++ ){scanf("%d%d%d", &v, &w, &s);if(s == 0){for(int j = v; j <= m; j ++ )f[j] = max(f[j], f[j - v]);}else{if(s == -1) s = 1;for(int k = 1; k <= s; k *= 2){for(int j = m; j >= k * v; j --)f[j] = max(f[j], f[j - k * v] + k * w);s -= k;}if(s){for(int j = m; j >= s * v; j --)f[j] = max(f[j], f[j - s * v] + s * w);}}}printf("%d", f[m]);return 0;
}

八.有依赖的背包

(1)例题

10. 有依赖的背包问题 - AcWing题库

(2)参考代码

#include<iostream>
#include<vector>
using namespace std;
int f[110][110];//f[x][v]表达选择以x为子树的物品,在容量不超过v时所获得的最大价值
vector<int> g[110];
int v[110],w[110];
int n,m,root;int dfs(int x)
{for(int i=v[x];i<=m;i++) f[x][i]=w[x];//点x必须选,所以初始化f[x][v[x] ~ m]= w[x]for(int i=0;i<g[x].size();i++){int y=g[x][i];dfs(y);for(int j=m;j>=v[x];j--)//j的范围为v[x]~m, 小于v[x]无法选择以x为子树的物品{for(int k=0;k<=j-v[x];k++)//分给子树y的空间不能大于j-v[x],不然都无法选根物品x{f[x][j]=max(f[x][j],f[x][j-k]+f[y][k]);}}}
}int main()
{cin>>n>>m;for(int i=1;i<=n;i++){int fa;cin>>v[i]>>w[i]>>fa;if(fa==-1)root=i;elseg[fa].push_back(i);}dfs(root);cout<<f[root][m];return 0;
}

九.二维费用背包

(1)简介

其实就是多了一维,和一维费用没啥区别

二维背包可以结合上述所有背包!

(2)例题

8. 二维费用的背包问题 - AcWing题库

(3)参考代码

#include<bits/stdc++.h>
#define maxn 1005
using namespace std;
int f[maxn][maxn];
int n,V,M;
int main(){scanf("%d%d%d",&n,&V,&M);for(int i=1;i<=n;i++){int v,m,w;scanf("%d%d%d",&v,&m,&w);//就是这里多了一维,多了一个循环,很好理解for(int j=V;j>=v;j--){for(int k=M;k>=m;k--){f[j][k]=max(f[j][k],f[j-v][k-m]+w);}}}printf("%d",f[V][M]);return 0;
}

十.总结

1.只有完全背包是正序遍历的,其他背包都是倒序遍历!

2.背包模型显而易见都是题目中给有一定的约束,如:有个多大容积的背包,有多少钱,等等。然后就是有几种方案,又给出相其对应的代价和贡献,最后求MAX or Count。

3.DP核心就在于熟练掌握闫氏DP分析法和题刷多了,积累了足够多的状态转移方程。

4.其实背包问题并不难,待到题刷够了,一切就迎刃而解了!加油!!!

http://www.lryc.cn/news/228149.html

相关文章:

  • 04 jenkins中使用各种变量(Powershell、cmd)
  • 2023年云计算的发展趋势
  • 工作十年+的测试应该具备什么能力?
  • 区块链链游合约系统开发项目模式技术方案
  • 业务出海之服务器探秘
  • 飞天使-django创建一个初始项目过程
  • 【工具插件类教学】全局积雪系统和雪痕迹显示(移动痕迹)
  • ​软考-高级-系统架构设计师教程(清华第2版)【第3章 信息系统基础知识(p120~159)-思维导图】​
  • STM32基础--NVIC中断控制器
  • 使用matlab实现图像信号的色彩空间转换
  • Vatee万腾科技决策力的引领创新:Vatee数字化视野的崭新天地
  • Go语言安装教程
  • MVVM框架:图片加载有问题
  • 一篇文章搞明白js运行机制——事件循环
  • Leetcode 第 371 场周赛题解
  • keras转onnx,TensorFlow转tf.keras.models.load_model,onnx精度转换
  • 高可用架构设计
  • qemu 之 uboot、linux 启动
  • C语言--每日五道选择题--Day8
  • Outlook如何删除邮箱账户
  • ultrascale+mpsoc系列的ZYNQ中DDR4参数设置说明
  • maven-六类属性
  • 微服务概念
  • 响应式摄影科技传媒网站模板源码带后台
  • 探索C#事件(Event)的强大应用
  • 学习c#的第四天
  • 解析JSON字符串:属性值为null的时候不被序列化
  • 短视频短剧小程序系统:用技术丰富你的碎片时间
  • 服务器数据恢复—磁盘出现坏道掉线导致raid5阵列崩溃的数据恢复案例
  • Android R.fraction