当前位置: 首页 > news >正文

我在Vscode学OpenCV 初步接触

OpenCV是一个开源的计算机视觉库,可以处理图像和视频数据。它包含了超过2500个优化过的算法,用于对图像和视频进行处理,包括目标识别、面部识别、运动跟踪、立体视觉等。OpenCV支持多种编程语言,包括C++、Python、Java等,可以在Windows、Linux、Mac OS X、Android等多个平台上使用。

图像

图像和视频数是指数字图像和数字视频中包含的像素或帧数。在数字图像中,图像数指的是图像中包含的像素数量,通常用宽度和高度的乘积来表示。在数字视频中,视频数指的是视频中包含的帧数,即视频中连续的静止图像序列数量。图像和视频数是指数字图像和数字视频中包含的像素或帧数。在数字图像中,图像数指的是图像中包含的像素数量,通常用宽度和高度的乘积来表示。在数字视频中,视频数指的是视频中包含的帧数,即视频中连续的静止图像序列数量。

我在Vscode学OpenCV

    • 图像
  • 如果遇到了cv2无法有智能提示的功能
  • 一、图像基本操作
    • 1.1 读取图像
      • 1.1.1 演示:
      • 1.1.2 支持
      • 1.1.3 flag
        • 部分解释:
          • 1.*.1_ 什么是alpha通道
          • 1.*.2_ 灰度图后使用 print 语句打印读取的图像数据。
    • 1.2 显示图像
      • 1.2.1 imshow函数__在一个窗口内显示读取的图像。
      • 1.2.2 namedWindow__创建指定名称的窗口
      • 1.2.3 waitKey函数
        • 1.2.3.1 要实现交互,可以使用cv2.waitKey函数来等待键盘输入
      • 1.2.4 destroyWindow函数
      • 1.2.5 destroyAllWindows
    • 1.3 保存图像 cv2.imwrite()

pip install opencv-contrib-python 直接安装编译好的 OpenCV 贡献库

如果遇到了cv2无法有智能提示的功能

就把你下载cv2的路径下安装包cv2的pyd复制到你现在使用的Python解释器路径的文件下面

一、图像基本操作

导入所需要的库(使用 pip install 完整路径文件名完成安装)

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

1.1 读取图像

 img = cv2.imread(filename, flags=None)
  • img是返回值,其值是读取到的图像。如果未读取到图像,则返回“None”。
  • filename 表示要读取的图像的完整文件名。
  • flags 是读取标记。该标记用来控制读取文件的类型

在这里插入图片描述

1.1.1 演示:

使用的照片:
在这里插入图片描述

# 图像IO操作
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1.读取图像img = cv.imread("Pic/f2e919585490afd1bebd313257e7ad9.jpg")# 2、显示图像
## 2.1 OpenCV中的方法
cv.imshow("THIS Pi", img)
cv.waitKey(0)
# 按照窗口显示的
cv.destroyAllWindows()

在这里插入图片描述

1.1.2 支持

在这里插入图片描述

在这里插入图片描述

1.1.3 flag

在这里插入图片描述
在这里插入图片描述
cv2.IMREAD_UNCHANGED和cv2.IMREAD_GRAYSCALE是OpenCV库中用于读取图像的两种不同的模式。

  • cv2.IMREAD_UNCHANGED:这个模式会读取图像的原始数据,包括alpha通道(如果存在的话)。也就是说,如果图像是彩色的,那么它会保持彩色,如果图像有alpha通道,那么alpha通道也会被保留。

  • cv2.IMREAD_GRAYSCALE:这个模式会将图像转换为灰度图像。也就是说,无论原始图像是彩色的还是带有alpha通道的,读取后的图像都会是灰度的。加粗样式

- IMREAD_UNCHANGED = -1:返回原始图像,包括alpha通道(如果存在)在内的所有信息,即原始图像。- IMREAD_GRAYSCALE = 0:将图像转换为灰度图像。- IMREAD_COLOR = 1:返回BGR顺序的彩色图像,忽略alpha通道。- IMREAD_ANYDEPTH = 2:如果图像具有深度信息,保留这些信息(,则返回16/32位图像),否则将图像转换为8位。- IMREAD_ANYCOLOR = 4:尝试以最可能的颜色格式读取图像。- IMREAD_LOAD_GDAL = 8:使用GDAL驱动来读取图像。- IMREAD_REDUCED_GRAYSCALE_2 = 16, IMREAD_REDUCED_GRAYSCALE_4 = 32, IMREAD_REDUCED_GRAYSCALE_8 = 64:将图像转换为单通道灰度图像,并减少图像的大小(分别减少1/21/41/8)。- IMREAD_REDUCED_COLOR_2 = 17, IMREAD_REDUCED_COLOR_4 = 33, IMREAD_REDUCED_COLOR_8 = 65:转换图像为3通道BGR彩色图像,并减少图像的大小(分别减少1/21/41/8)。- IMREAD_IGNORE_ORIENTATION = 128:忽略EXIF元数据中的定位信息,不旋转图像。这些标志可以根据你的需求进行组合使用,例如,你可以同时使用IMREAD_GRAYSCALE和IMREAD_REDUCED_GRAYSCALE_2,这样OpenCV会读取灰度图像,并将其大小减少一半。
部分解释:
1.*.1_ 什么是alpha通道

Alpha通道是图像中的一个通道,它表示图像的透明度信息。在一个RGBA颜色模型中,R代表红色,G代表绿色,B代表蓝色,A代表Alpha,即透明度。
在这里插入图片描述

Alpha通道的值通常在0到255之间,其中0表示完全透明,255表示完全不透明。通过改变Alpha通道的值,我们可以改变图像的透明度。例如,如果我们将一个像素的Alpha值设置为127,那么这个像素将会是半透明的。

Alpha通道在图像处理中有很多应用,例如在合成两个图像时,我们可以通过调整Alpha通道的值来控制每个图像的可见度。

常见的色彩深度有:

  • 1位:二值图像,只有黑和白两种颜色。
  • 8位:灰度图像,可以表示256种不同的灰度级别。
  • 24位:真彩色图像,每个颜色通道(红、绿、蓝)使用8位,可以表示约1670万种颜色。
  • 32位:包含alpha通道的真彩色图像,每个颜色通道(红、绿、蓝和alpha)使用8位。

所以,如果你问的是像素可以表示的颜色数量,那么:

  • 1位色彩深度可以表示2种颜色。
  • 8位色彩深度可以表示256种颜色。
  • 24位色彩深度可以表示约1670万种颜色。
  • 32位色彩深度理论上可以表示约429亿种颜色,但实际上由于alpha通道表示的是透明度而非颜色,所以可表示的颜色数量仍然是约1670万种。

彩色深度标准通常有以下几种:

  • 8位色,每个像素所能显示的彩色数为2的8次方,即256种颜色。
  • 16位增强色,16位彩色,每个像素所能显示的彩色数为2的16次方,即65536种颜色。
  • 24位真彩色,每个像素所能显示的彩色数为24位,即2的24次方,约1680万种颜色。
  • 32位真彩色,即在24位真彩色图像的基础上再增加一个表示图像透明度信息的Alpha通道。
1.*.2_ 灰度图后使用 print 语句打印读取的图像数据。

输出图像的部分像素值

256个灰度等级,255代表全白,0表示全黑。
在这里插入图片描述
灰度图的显示的print
在这里插入图片描述
原格式的print
在这里插入图片描述

1.2 显示图像

在读取图像前判断图像文件是否存在,并在显示图像前判断图像是否存在

1.2.1 imshow函数__在一个窗口内显示读取的图像。

img = cv2.imshow( winname, mat )

winname 是窗口名称、mat 是要显示的图像。

cv2.imshow("THIS Pi", img)
cv2.imshow("THIS Pi", img)

如果是两个同名的,只会显示一个窗口

cv2.namedWindow("lesson")
cv2.imshow("THIS Pi", img)
cv2.imshow("lesson", img)  引用一个并不存在的窗口,并在其中显示指定图像

可以用cv2.imshow()来创建一个新窗口并显示图像。如果指定的窗口名称已存在,则会在该窗口中显示图像。如果指定的窗口名称不存在,则会创建一个新的窗口并显示图像。实际上,cv2.imshow()函数会完成窗口的创建和图像的显示两个步骤。

1.2.2 namedWindow__创建指定名称的窗口

 img = cv2.namedWindow( winname )

1.2.3 waitKey函数

cv2.waitKey( [delay] )

retval表示函数cv2.waitKey()的返回值。如果没有按键被按下,则返回-1;如果有按键被按下,则返回该按键的ASCII码。

delay表示等待键盘触发的时间,单位是毫秒。当该值设置为负数或零时,表示无限等待,即函数会一直等待键盘的触发。该值默认为0。
在这里插入图片描述

1.2.3.1 要实现交互,可以使用cv2.waitKey函数来等待键盘输入
import cv2# 读取图像
image = cv2.imread("image.jpg")while True:# 在窗口中显示图像cv2.imshow("Image", image)# 等待键盘输入,等待时间为0毫秒key = cv2.waitKey(0)# 如果按下键盘上的 "q" 键,退出循环if key == ord("q"):break# 关闭窗口
cv2.destroyAllWindows()

窗口会显示读取的图像,然后等待键盘输入。如果按下的是 “q” 键,程序将退出循环并关闭窗口。如果按下其他键,则会继续等待键盘输入。这样就实现了交互式地显示图像。

1.2.4 destroyWindow函数

cv2.destroyWindow( winname #winname 是窗口的名称。

1.2.5 destroyAllWindows

 cv2.destroyAllWindows()#用来释放(销毁)所有窗口

在这里插入图片描述

1.3 保存图像 cv2.imwrite()

retval cv2.imwrite( filename, img[, params] )

retval 是返回值。如果保存成功,则返回 True;如果保存不成功,则返回 False。

filename 是要保存的目标文件的完整路径名,包含文件扩展名。

img 是被保存的图像。

params 是保存类型参数,是可选的

import cv2# 读取图像
image = cv2.imread("image.jpg")# 保存图像
retval = cv2.imwrite("saved_image.jpg", image)# 判断是否保存成功
if retval:print("图像保存成功")
else:print("图像保存失败")

在这里插入图片描述
保存灰度图
对比一下先:
在这里插入图片描述

plt.imshow(img,cmap=plt.cm.gray)
在这里插入图片描述
为了直观用Pycharm
在这里插入图片描述

http://www.lryc.cn/news/214332.html

相关文章:

  • [threejs]让导入的gltf模型显示边框
  • YOLOv5优化:独家创新(SC_C_Detect)检测头结构创新,实现涨点 | 检测头新颖创新系列
  • 作物模型--土壤数据制备过程
  • 学习笔记|单样本t检验|无统计学意义|规范表达|《小白爱上SPSS》课程:SPSS第四讲 | 单样本T检验怎么做?很单纯很简单!
  • Bug管理规范
  • 剑指JUC原理-8.Java内存模型
  • Azure 机器学习 - 使用 AutoML 和 Python 训练物体检测模型
  • 【深度学习】pytorch——快速入门
  • git本地项目同时推送提交到github和gitee同步
  • 结构体数据类型使用的一些注意点
  • Serverless化云产品超40款 阿里云发布全球首款容器计算服务
  • 最小化安装移动云大云操作系统--BCLinux-R8-U2-Server-x86_64-231017版
  • 索引创建的原则
  • 动态表单生成Demo(Vue+elment)
  • JMeter断言之JSON断言
  • LuatOS-SOC接口文档(air780E)--mqtt - mqtt客户端
  • 安装Python环境
  • [nodejs] 爬虫加入并发限制并发实现痞客邦网页截图
  • GEE——Publisher Data Catalogs发布者数据目录
  • 计算10的阶乘
  • 6.卷积神经网络
  • postgresql|数据库|SQL语句冲突的解决
  • overflow溢出属性、定位、前端基础之JavaScript
  • 【JS】Chapter6-Dom 获取属性操作
  • 太极培训机构展示服务预约小程序的作用如何
  • node使用path模块的基本使用
  • 我和云栖大会有个约会
  • Linux各个发行版之间的关系
  • 第一章 第一行Android代码
  • 怎样利用 AI 大模型,辅助研发管理与效能提升?