当前位置: 首页 > news >正文

Redis高级删除策略与数据淘汰

第二章:Redis高级

学习目标

目标1:能够说出redis中的数据删除策与略淘汰策略

目标2:能够说出主从复制的概念,工作流程以及场景问题及解决方案

目标3:能够说出哨兵的作用以及工作原理,以及如何启用哨兵

目标4:能够说出集群的架构设计,完成集群的搭建

目标5:能够说出缓存预热,雪崩,击穿,穿透的概念,能说出redis的相关监控指标

1.数据删除与淘汰策略

1.1 过期数据

1.1.1 Redis中的数据特征

Redis是一种内存级数据库,所有数据均存放在内存中,内存中的数据可以通过TTL指令获取其状态

TTL返回的值有三种情况:正数,-1,-2

  • 正数:代表该数据在内存中还能存活的时间
  • -1:永久有效的数据
  • -2 :已经过期的数据 或被删除的数据 或 未定义的数据

删除策略就是针对已过期数据的处理策略,已过期的数据是真的就立即删除了吗?其实也不是,我们会有多种删除策略,是分情况的,在不同的场景下使用不同的删除方式会有不同效果,这也正是我们要将的数据的删除策略的问题

1.1.2 时效性数据的存储结构

在Redis中,如何给数据设置它的失效周期呢?数据的时效在redis中如何存储呢?看下图:
在这里插入图片描述
过期数据是一块独立的存储空间,Hash结构,field是内存地址,value是过期时间,保存了所有key的过期描述,在最终进行过期处理的时候,对该空间的数据进行检测, 当时间到期之后通过field找到内存该地址处的数据,然后进行相关操作。

1.2 数据删除策略

1.2.1 数据删除策略的目标

在内存占用与CPU占用之间寻找一种平衡,顾此失彼都会造成整体redis性能的下降,甚至引发服务器宕机或 内存泄露

针对过期数据要进行删除的时候都有哪些删除策略呢?

  • 1.定时删除

  • 2.惰性删除

  • 3.定期删除

  • 1.2.2 定时删除

创建一个定时器,当key设置有过期时间,且过期时间到达时,由定时器任务立即执行对键的删除操作

  • 优点:节约内存,到时就删除,快速释放掉不必要的内存占用
  • 缺点:CPU压力很大,无论CPU此时负载量多高,均占用CPU,会影响redis服务器响应时间和指令吞吐量
  • 总结:用处理器性能换取存储空间(拿时间换空间)
  • 在这里插入图片描述

1.2.3 惰性删除

数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断

  1. 如果未过期,返回数据
  2. 发现已过期,删除,返回不存在
  • 优点:节约CPU性能,发现必须删除的时候才删除

  • 缺点:内存压力很大,出现长期占用内存的数据

  • 总结:用存储空间换取处理器性能(拿空间换时间)

  • 在这里插入图片描述

  • 在这里插入图片描述

1.2.4 定期删除

定时删除和惰性删除这两种方案都是走的极端,那有没有折中方案?

我们来讲redis的定期删除方案:

  • Redis启动服务器初始化时,读取配置server.hz的值,默认为10

  • 每秒钟执行server.hz次serverCron()-------->databasesCron()(定时执行)--------->activeExpireCycle()

  • **activeExpireCycle()**对每个expires[*]逐一进行检测,每次执行耗时:250ms/server.hz

  • 对某个expires[*]检测时,随机挑选W个key检测

  如果key超时,删除key如果一轮中删除的key的数量>W*25%,循环该过程如果一轮中删除的key的数量≤W*25%,检查下一个expires[*],0-15循环W取值=ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP属性值
  • 参数current_db用于记录activeExpireCycle() 进入哪个expires[*] 执行

  • 如果activeExpireCycle()执行时间到期,下次从current_db继续向下执行

  • 在这里插入图片描述
    总的来说:定期删除就是周期性轮询redis库中的时效性数据,采用随机抽取的策略,利用过期数据占比的方式控制删除频度

  • 特点1:CPU性能占用设置有峰值,检测频度可自定义设置

  • 特点2:内存压力不是很大,长期占用内存的冷数据会被持续清理

  • 总结:周期性抽查存储空间(随机抽查,重点抽查)

1.2.5 删除策略对比

1:定时删除:

节约内存,无占用,
不分时段占用CPU资源,频度高,
拿时间换空间

2:惰性删除:

内存占用严重
延时执行,CPU利用率高
拿空间换时间

3:定期删除:

内存定期随机清理
每秒花费固定的CPU资源维护内存
随机抽查,重点抽查

1.3 数据淘汰策略(逐出算法)

1.3.1 淘汰策略概述

什么叫数据淘汰策略?什么样的应用场景需要用到数据淘汰策略?

当新数据进入redis时,如果内存不足怎么办?
在执行每一个命令前,会调用**freeMemoryIfNeeded()**检测内存是否充足。如果内存不满足新 加入数据的最低存储要求,redis要临时删除一些数据为当前指令清理存储空间。清理数据的策略称为逐出算法。

注意:逐出数据的过程不是100%能够清理出足够的可使用的内存空间,如果不成功则反复执行。当对所有数据尝试完毕, 如不能达到内存清理的要求,将出现错误信息如下

(error) OOM command not allowed when used memory >'maxmemory'

1.3.2 策略配置

影响数据淘汰的相关配置如下:

1:最大可使用内存,即占用物理内存的比例,默认值为0,表示不限制。生产环境中根据需求设定,通常设置在50%以上

maxmemory ?mb

2:每次选取待删除数据的个数,采用随机获取数据的方式作为待检测删除数据

maxmemory-samples count

3:对数据进行删除的选择策略

maxmemory-policy policy

那数据删除的策略policy到底有几种呢?一共是3类8种

第一类:检测易失数据(可能会过期的数据集server.db[i].expires )

volatile-lru:挑选最近最少使用的数据淘汰
volatile-lfu:挑选最近使用次数最少的数据淘汰
volatile-ttl:挑选将要过期的数据淘汰
volatile-random:任意选择数据淘汰

在这里插入图片描述
第二类:检测全库数据(所有数据集server.db[i].dict )

allkeys-lru:挑选最近最少使用的数据淘汰
allkeLyRs-lfu::挑选最近使用次数最少的数据淘汰
allkeys-random:任意选择数据淘汰,相当于随机

第三类:放弃数据驱逐

no-enviction(驱逐):禁止驱逐数据(redis4.0中默认策略),会引发OOM(Out Of Memory)

注意:这些策略是配置到哪个属性上?怎么配置?如下所示

maxmemory-policy volatile-lru

数据淘汰策略配置依据

使用INFO命令输出监控信息,查询缓存 hit 和 miss 的次数,根据业务需求调优Redis配置

http://www.lryc.cn/news/21300.html

相关文章:

  • 社畜大学生的Python之pandas学习笔记,保姆入门级教学
  • 20_FreeRTOS低功耗模式
  • Hive的使用方式
  • Flume三大核心组件
  • 数据结构(六)二叉树
  • Docker buildx 的跨平台编译
  • 【java基础】方法重载和方法重写
  • Gradle7.4安装与基本使用
  • [系统安全] 虚拟化安全之虚拟化概述
  • 如何从零开始系统的学习项目管理?
  • 面试题-----
  • 线材-电子线载流能力
  • 单变量回归问题
  • ubuntu/linux系统知识(36)linux网卡命名规则
  • java的一些冷知识
  • java代理模式
  • JUC包:CountDownLatch源码+实例讲解
  • Log4j2基本使用
  • A2L在CAN FD总线的使用
  • Android JetPack之启动优化StartUp初始化组件的详解和使用
  • [11]云计算|简答题|案例分析|云交付|云部署|负载均衡器|时间戳
  • C++11/C++14:lambda表达式
  • 算法课堂-分治算法
  • 操作系统权限提升(十六)之绕过UAC提权-CVE-2019-1388 UAC提权
  • 实例9:四足机器人运动学正解平面RR单腿可视化
  • 堆的基本存储
  • 如何获取物体立体信息通过一个相机
  • 【数据挖掘实战】——中医证型的关联规则挖掘(Apriori算法)
  • 一些硬件学习的注意事项与快捷方法
  • 【Tomcat】Tomcat安装及环境配置