当前位置: 首页 > news >正文

【数据挖掘】1、综述:背景、数据的特征、数据挖掘的六大应用方向、有趣的案例

目录

  • 一、背景
    • 1.1 学习资料
    • 1.2 数据的特征
    • 1.3 数据挖掘的应用案例
    • 1.4 获取数据集
    • 1.5 数据挖掘的定义
  • 二、分类
  • 三、聚类
  • 四、关联分析
  • 五、回归
  • 六、可视化
  • 七、数据预处理
  • 八、有趣的案例
    • 8.1 隐私保护
    • 8.2 云计算的弹性资源
    • 8.3 并行计算
  • 九、总结

一、背景

1.1 学习资料

推荐书籍如下:

在这里插入图片描述

Google Scholar:搜学术期刊

开源数据集:UCI Machine Learing Repository

开源 GUI 工具,方便快速上手:WEKA

KDD nuggets: 数据挖掘网站

在这里插入图片描述

1.2 数据的特征

数据是最底层的概念,其中有价值的才能称作信息。

大数据有三个特征:

  • Volumn:容量够大,TB 变为 ZB 等。
  • Variety:多样:从结构化的二维 excel 表格,到非结构化的文字、声音、图像、视频等待加工的数据。
  • Velocity:速度:从静态数据集,到动态高 QPS 的流式数据处理,对算法有很高要求。
    在这里插入图片描述

1.3 数据挖掘的应用案例

大数据的应用场景:

  • 安防预测:预测疑犯行为,提前防火,而不是事后疲于救火。
    在这里插入图片描述
  • 对症下药:
    在这里插入图片描述
  • APP 地理位置可视化:
    在这里插入图片描述
  • 商店购物:区域热力图、人员轨迹、停留时间 =》 精准营销(推荐商品)
    在这里插入图片描述
  • 情感分析:文字识别,分析情感
    在这里插入图片描述
  • 体育数据分析:2000 年左右国外真实案例,小牌球队,利用数据挖掘分析各球员的特点,组织球队布阵,取得商业成功,也将此真实故事拍成了电影《点球成金》。
    在这里插入图片描述
  • 美女挖掘:通过非诚勿扰各女嘉宾的信息(包括身高、面部关键点度量、家庭背景、对心动男生的期待等),挖掘大众心中的心动女生有何特征。
    在这里插入图片描述

1.4 获取数据集

越来越多公开数据集出现:法律公开(允许自由使用),技术容易获取(易结构化,易清洗)。下面是一些公开数据集网址,可以多多使用。

在这里插入图片描述

政府其实有极多数据,其也会开放很多数据,如下,方便大家做多维数据融合挖掘:

在这里插入图片描述

1.5 数据挖掘的定义

不同于以往的数据处理,而是针对大量数据,发掘出有趣、有用、隐含的信息。

在这里插入图片描述

数据清洗后变为信息,信息挖掘得到知识,知识通过领域模型得到有用的决策。

在这里插入图片描述

ETL 如下:

在这里插入图片描述

工业界数据挖掘和可视化软件有很多:

在这里插入图片描述

二、分类

分类任务是通过给定一些训练集,训练后得到分类模型模型,下面几种模型是常用的分类模型:

  • 决策树
  • K 近临
  • 神经网络
  • SVM

在这里插入图片描述

分类的本质其实是,得到分界面:

在这里插入图片描述

我们需要的是黑色的线(因为是平滑的),因为绿色的线是过拟合(即死记硬背的模型,并未东西出数据规律)

在这里插入图片描述

数据的训练集和预测集需要不同,才能体现模型的有效性。

在这里插入图片描述

混淆矩阵,是各种模型指标的定义根基:

  • TP:即数据本身的ActualValue即为 Positive,且其预测得到的 PredictedValue 也 Truely 预测为 Positive,即预测对了。
  • TN:即数据本身的ActualValue即为 Negative,且其预测得到的 PredictedValue 也 Truely 预测为 Negative,即预测对了。
  • FP:即数据本身的ActualValue即为 Negative,且其预测得到的 PredictedValue 却 Falsely 预测为 Positive,即预测错了。
  • FN:即数据本身的ActualValue即为 Positive,且其预测得到的 PredictedValue 也 Falsely 预测为 Negative,即预测错了。

基于这些概念:又衍生了最常用的两个呈反比的指标:例如预测集共 500 个,其中 200 个为 A 类,300 个为 B 类。模型预测出其中 50 个为 A 类(其中预测对的是 30 个)。

  • Precision准确率:模型真正预测对的数量 / 「模型预测」「出的」数量。即 30 / 50。
  • Recall查全率: 模型真正预测对的数量 / 「总预测集」的「对的」数量。即 30 / 200。
    在这里插入图片描述

P - R 曲线如下:

  • Precision 和 Recall 二者的「PR曲线呈反比关系」(纵轴为 Precision,横轴为 Recall,每个点位不同的业务阈值。因为二者呈反比关系,故一般选「适中」的业务阈值来使得 P 和 R 可以「兼顾」):
    • 因为模型输出都是介于 0 到 1 的得分,如 0.7,标识有 70%的概率是 A类。
    • 而应用层可以定义阈值,若高于阈值则视为「业务视为:输出 A 类」,反之若低于阈值则视为「业务视为:输出非 A 类」。
      • 如果业务把阈值定的很高(例如 0.999)那么输出结果很少但很准确, 即「Recall低(漏了很多结果)」而「Precision高(判断很准确,很严格)」。
      • 如果业务把阈值定的很低(例如 0.001)那么输出结果很多但很多误报,即「Recall高(一个结果都没漏)」而「Precision低(判断很不准,都在误报)」。
        在这里插入图片描述

三、聚类

聚类不同于分类(并没有「事先人为定义的标签」,而是根据各点之间的「距离」度量的),其只是将一批数据集聚为不同的堆。

在这里插入图片描述

聚类分为平铺聚类和层次型聚类,如下图:

  • 比如:都是中国人类,但又细分为南方人+北方人、其中北方人又分为东北、中原、西北人等。
    在这里插入图片描述

四、关联分析

商店购买记录,分析各商品的关联性。

在这里插入图片描述

在这里插入图片描述

五、回归

线性回归:其实可以拟合出线性方程、二元方程、多项式方程等。其「线性」二字的含义是参数和自变量之间是线性关系(即下图中的 beta 和 x)

在这里插入图片描述

回归同样存在过拟合问题(下图一是欠拟合太简单了,下图三是过拟合死记硬背所有训练数据不具备扩展性,下图二是适中的也是最好的模型):

在这里插入图片描述

六、可视化

通过所见即所得,充分展示出数据,更容易发挥人的分析能力:拿到数据后,先做可视化大概估计数据分布,再确定详细挖掘算法。

同样数据挖掘后,再把结果可视化,让人为评判效果。来确定下一步挖掘方向。

在这里插入图片描述

可视化需要以受众易理解的语言、图表形式(如右下图的驾驶舱)进行:

在这里插入图片描述

有很多图表,可以酷炫地展示结果,让人更易理解挖掘的价值。

在这里插入图片描述

七、数据预处理

我们拿到的通常是脏数据:其可能缺失(如未填写年龄)或错误(如年龄填写为负数),因此需要清洗

在这里插入图片描述

数据清洗通常很累,但缺必不可少的地基工作:

在这里插入图片描述

八、有趣的案例

8.1 隐私保护

1990 年互联网兴起时,隐私性很好,你并不知道互联网对面是谁在操作键盘。

但现在 21 世纪,隐私性已经完全没有了,所有的时间、空间、身份、行为习惯均被记录并分析。

在这里插入图片描述

基于隐私保护的数据挖掘,是目前很新兴的研究领域:即收集数据、又保护用户隐私。

在这里插入图片描述

下图即为有隐私保护的数据挖掘,让挖掘者并不知道个体的数据,但可以获得宏观的数据,且保证获得的数据是真实的:

在这里插入图片描述

8.2 云计算的弹性资源

根据客户的实际需求,动态扩缩容资源。

在这里插入图片描述

8.3 并行计算

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Nvidia 的 TK1 尺寸很小,但计算性能是家用电脑的 10 倍以上。

在这里插入图片描述

在这里插入图片描述

九、总结

数据挖掘的必备元素:数据、算法、算力

在这里插入图片描述

没有银弹算法、没有银弹参数:通常先用简单算法验证效果(降低心智负担),后期再用复杂算法优化。

在这里插入图片描述

不能总是宏观看待问题,也要结合微观,才能详细挖掘数据规律:

在这里插入图片描述

两条曲线有关系,但不一定有因果关系:

在这里插入图片描述

避免幸存者偏差,来误解数据:

在这里插入图片描述

避免片面理解数据,避免以偏概全:

在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/21005.html

相关文章:

  • 【架构师】零基础到精通——康威定律
  • Could not extract response: no suitable HttpMessageConverter
  • 文献计量三大定律之一---洛特卡定律及普赖斯定律
  • 2023年软考高级网络规划设计师
  • 数据治理驱动因素 -报考题
  • 2023淘宝天猫38节红包满减优惠活动时间是从几月几号什么时候开始?
  • Hive表优化、表设计优化、Hive表数据优化(ORC)、数据压缩、存储优化
  • LearnOpenGL-入门-着色器
  • 【谷粒学院】vue、axios、element-ui、node.js(44~58)
  • 【一些回忆】2022.02.26-2023.02.26 一个普通男孩的365天
  • OSPF的多区域特性 (电子科技大学TCP/IP实验三)
  • (四十四)多个事务更新同一行数据时,是如何加锁避免脏写的?
  • 【数据库】第十二章 数据库管理
  • Redis源码---整体架构
  • 基于springboot+vue的校园招聘系统
  • SAP MM学习笔记1-SAP中扩张的概念,如何将一个物料从工厂A扩张到工厂B
  • 【Python】Numpy数组的切片、索引详解:取数组的特定行列
  • 2023年全国最新交安安全员精选真题及答案6
  • JavaScript 闭包【自留】
  • 【MySQL】什么是意向锁 IS IX 及值得学习的思想
  • python多线程实现
  • macOS使用CodeRunner快速配置fortran环境
  • 【云原生】k8s 离线部署讲解和实战操作
  • 【Kubernetes】第十一篇 - 滚动发布的介绍与实现
  • 【尊享版】如何系统构建你的思维认知模型?
  • urho3D编码约定
  • Overleaf推广奖励:增加合作者的数量、解锁Dropbox同步和项目修改历史
  • ChatGPT的互补工具Perplexity的详细使用方法(持续更新)
  • 【Linux驱动开发100问】如何编译Linux内核?
  • 15、条件概率、全概率公式、贝叶斯公式、马尔科夫链