当前位置: 首页 > news >正文

数据结构预算法之买卖股票的最好时机(三)动态规划

目录:
一.题目
知识点:动态规划
二.动态规划数组思路确定
1.dp数组以及下标的含义
2.确定递推公式
3.dp数组如何初始化
4.确定遍历顺序
5.举例推导dp数组

一.题目

知识点:动态规划

动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果

二.动态规划数组思路

这道题目相对前面两道题目难了不少。

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

  1. 确定dp数组以及下标的含义

一天一共就有五个状态,

(0)没有操作 (其实我们也可以不设置这个状态)

(1)第一次持有股票

(2)第一次不持有股票

(3)第二次持有股票

(4)第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]

  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]

  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

以上五部都分析完了,不难写出如下代码:

class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};
  • 时间复杂度:O(n)

  • 空间复杂度:O(n × 5)

java实现

class Solution {public int maxProfit(int[] prices) {int len = prices.length;// 边界判断, 题目中 length >= 1, 所以可省去if (prices.length == 0) return 0;/** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出*/int[][] dp = new int[len][5];dp[0][1] = -prices[0];// 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润dp[0][3] = -prices[0];for (int i = 1; i < len; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i][3] + prices[i]);}return dp[len - 1][4];}
}

http://www.lryc.cn/news/20142.html

相关文章:

  • 【数通网络交换基础梳理2】三层设备、网关、ARP表、VLAN、路由表及跨网段路由下一跳转发原理
  • Java-排序链表问题
  • c++之二叉树【进阶版】
  • 【数据库】 SQLServer
  • Linux 4.19 内核中 spinlock 概览
  • TensorFlow 1.x学习(系列二 :1):基本概念TensorFlow的基本介绍,图,会话,会话中的run(),placeholder(),常见的报错
  • javaEE 初阶 — 关于 IPv4、IPv6 协议、NAT(网络地址转换)、动态分配 IP 地址 的介绍
  • 《Qt 6 C++开发指南》简介
  • CleanMyMac是什么清理软件?及使用教程
  • Linux小黑板(9):共享内存
  • Detr源码解读(mmdetection)
  • 一个.Net Core开发的,撑起月6亿PV开源监控解决方案
  • C语言数据结构初阶(2)----顺序表
  • K8S常用命令速查手册
  • Linux系统下命令行安装MySQL5.6+详细步骤
  • 13.STM32超声波模块讲解与实战
  • 逆向之Windows PE结构
  • ACL是什么
  • 操作系统核心知识点整理--内存篇
  • 从零开始学习iftop流量监控(找出服务器耗费流量最多的ip和端口)
  • 第一篇博客------自我介绍篇
  • No suitable device found for this connection (device lo not available(网络突然出问题)
  • 【算法设计技巧】分治算法
  • 已解决kettle新建作业,点击保存抛出异常Invalid state, the Connection object is closed.
  • 【设计模式】 工厂模式介绍及C代码实现
  • 深入浅出PaddlePaddle函数——paddle.arange
  • X86 ATT常用寄存器及其操作指令
  • Kotlin 高端玩法之DSL
  • 理光M2701复印机载体初始化方法
  • 2.25Maven的安装与配置