当前位置: 首页 > news >正文

TensorFlow 1.x学习(系列二 :1):基本概念TensorFlow的基本介绍,图,会话,会话中的run(),placeholder(),常见的报错

目录

      • 1.基本介绍
      • 2.图的结构
      • 3.会话,会话的run方法
      • 4.placeholder
      • 5.返回值异常

写在前边的话:之前发布过一个关于TensorFlow1.x的转载系列,自己将基本的TensorFlow操作敲了一遍,但是仍然有很多地方理解的不够深入。所以重开一个系列,跟着网上找到的教程边听边再敲一遍。最终的目的是实现一个新闻分类的demo,代码已有但是之前没有看懂。再往后应该会出一个pytorch的系列,最后目的是将tensorflow1.x的代码用pytorch再实现一遍。

1.基本介绍

tensorflow1.x 有其独有的语法体系,不同于Python代码的是,自定义的变量和函数无法直接输出结果,必须要在会话中完成该操作。

import tensorflow as tf
C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'._np_qint8 = np.dtype([("qint8", np.int8, 1)])
C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'._np_quint8 = np.dtype([("quint8", np.uint8, 1)])
C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'._np_qint16 = np.dtype([("qint16", np.int16, 1)])
C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'._np_quint16 = np.dtype([("quint16", np.uint16, 1)])
C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\dtypes.py:521: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'._np_qint32 = np.dtype([("qint32", np.int32, 1)])
C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.np_resource = np.dtype([("resource", np.ubyte, 1)])
# 实现一个加法运算
a = tf.constant(5.0)
b = tf.constant(6.0)
sum1 = tf.add(a,b)# 查看结果
print(a,b)
print(sum1)
Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0", shape=(), dtype=float32)
Tensor("Add:0", shape=(), dtype=float32)
# 在会话中实现
with tf.Session() as sess:print(sess.run(sum1))
11.0

2.图的结构

一些概念:

tensor:张量
operation(op):专门运算的操作节点(注:所有操作都是一个op)
图(graph):你的整个程序的结构
会话(Session):运算程序的图
# 查看默认的图,根据打印的结果可以看到,图的在内存中的位置
graph = tf.get_default_graph()
graph
<tensorflow.python.framework.ops.Graph at 0x1c82a43df60>
# 打印各op的graph属性可以看到,地址都一样,都是该图的一部分
with tf.Session() as sess:print(sess.run(sum1))print(a.graph)print(sum1.graph)print(sess.graph)
11.0
<tensorflow.python.framework.ops.Graph object at 0x000001C82A43DF60>
<tensorflow.python.framework.ops.Graph object at 0x000001C82A43DF60>
<tensorflow.python.framework.ops.Graph object at 0x000001C82A43DF60>
# 一般一个程序里只有一个图,那么如何定义其他图呢
g = tf.Graph()
print(g)
<tensorflow.python.framework.ops.Graph object at 0x000001C82A48E588>
# 可以看到新定义的图和之前的图内存位置并不同
with g.as_default():c = tf.constant(11.0)print(c)print(c.graph)
Tensor("Const:0", shape=(), dtype=float32)
<tensorflow.python.framework.ops.Graph object at 0x000001C82A48E588>

总结:

创建一张图包含了一组op和tensor,上下文环境
op:只要使用tensorflow的API定义的函数都是OP
tensor:指代的就是数据

3.会话,会话的run方法

理解:

可以将tensorflow看做两部分:

前端系统:定义程序的图结构后端系统:运算图结构

会话的作用:

1.运行图的结构2.分配资源计算3.掌握资源(变量的资源,队列,线程)

一次只能运行一个图,可以在会话中指定图去运行tf.Session(graph = )

# 一次只能运行一个图,可以在会话中指定图去运行tf.Session(graph = )
with tf.Session() as sess:print(sess.run(c))print(a.graph)print(sum1.graph)print(sess.graph)# 会报错,因为c是别的图的一部分
# ValueError: Fetch argument <tf.Tensor 'Const:0' shape=() dtype=float32> cannot be interpreted as a Tensor. (Tensor Tensor("Const:0", shape=(), dtype=float32) is not an element of this graph.)
---------------------------------------------------------------------------ValueError                                Traceback (most recent call last)C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)281         self._unique_fetches.append(ops.get_default_graph().as_graph_element(
--> 282             fetch, allow_tensor=True, allow_operation=True))283       except TypeError as e:C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\ops.py in as_graph_element(self, obj, allow_tensor, allow_operation)3458     with self._lock:
-> 3459       return self._as_graph_element_locked(obj, allow_tensor, allow_operation)3460 C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\ops.py in _as_graph_element_locked(self, obj, allow_tensor, allow_operation)3537       if obj.graph is not self:
-> 3538         raise ValueError("Tensor %s is not an element of this graph." % obj)3539       return objValueError: Tensor Tensor("Const:0", shape=(), dtype=float32) is not an element of this graph.


During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)<ipython-input-10-c64ee74128b9> in <module>1 # 一次只能运行一个图2 with tf.Session() as sess:
----> 3     print(sess.run(c))4     print(a.graph)5     print(sum1.graph)C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)903     try:904       result = self._run(None, fetches, feed_dict, options_ptr,
--> 905                          run_metadata_ptr)906       if run_metadata:907         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)1120     # Create a fetch handler to take care of the structure of fetches.1121     fetch_handler = _FetchHandler(
-> 1122         self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)1123 1124     # Run request and get response.C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in __init__(self, graph, fetches, feeds, feed_handles)425     """426     with graph.as_default():
--> 427       self._fetch_mapper = _FetchMapper.for_fetch(fetches)428     self._fetches = []429     self._targets = []C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch)251         if isinstance(fetch, tensor_type):252           fetches, contraction_fn = fetch_fn(fetch)
--> 253           return _ElementFetchMapper(fetches, contraction_fn)254     # Did not find anything.255     raise TypeError('Fetch argument %r has invalid type %r' % (fetch,C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)287       except ValueError as e:288         raise ValueError('Fetch argument %r cannot be interpreted as a '
--> 289                          'Tensor. (%s)' % (fetch, str(e)))290       except KeyError as e:291         raise ValueError('Fetch argument %r cannot be interpreted as a 'ValueError: Fetch argument <tf.Tensor 'Const:0' shape=() dtype=float32> cannot be interpreted as a Tensor. (Tensor Tensor("Const:0", shape=(), dtype=float32) is not an element of this graph.)

指定图运行

# 指定图运行
with tf.Session(graph = g) as sess:print(sess.run(c))print(a.graph) # 这个能正常输出是因为在会话外就定义过print(sum1.graph) # 同上print(sess.graph)
11.0
<tensorflow.python.framework.ops.Graph object at 0x000001C82A43DF60>
<tensorflow.python.framework.ops.Graph object at 0x000001C82A43DF60>
<tensorflow.python.framework.ops.Graph object at 0x000001C82A48E588>

关于sess.run(fetches,feed_dict=None,graph = None):

1.作用:运行ops和计算tensor,相当于是启动整个图2.sess.close():与sess.run()相对应,关闭资源。但是在使用上下文管理器的结构中(with tf.Session as sess:...)可以省略

其他:

3.tf.Session() 中还有另外一个参数config (tf.Session(config = tf.ConfigPorto(log_device_placement=True)))作用是显示你的op具体是在那个设备上运行的以及其他详细情况。4.交互式:在命令行里使用,tf.interactiveSession(),方便调试,结合变量.eval()比较方便

例1:一次run多个

# 例1:一次run多个
with tf.Session() as sess:print(sess.run([a,b,sum1]))
[5.0, 6.0, 11.0]

2-1:run只能运行op和tensor

# 例2-1:run只能运行op和tensor
var1 = 2
var2 = 3
sum2 = var1 + var2
with tf.Session() as sess:print(sess.run(sum2))# TypeError: Fetch argument 5 has invalid type <class 'int'>, must be a string or Tensor. (Can not convert a int into a Tensor or Operation.)
---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)281         self._unique_fetches.append(ops.get_default_graph().as_graph_element(
--> 282             fetch, allow_tensor=True, allow_operation=True))283       except TypeError as e:C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\ops.py in as_graph_element(self, obj, allow_tensor, allow_operation)3458     with self._lock:
-> 3459       return self._as_graph_element_locked(obj, allow_tensor, allow_operation)3460 C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\framework\ops.py in _as_graph_element_locked(self, obj, allow_tensor, allow_operation)3547       raise TypeError("Can not convert a %s into a %s." % (type(obj).__name__,
-> 3548                                                            types_str))3549 TypeError: Can not convert a int into a Tensor or Operation.


During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)<ipython-input-13-31c14cd7002b> in <module>4 sum2 = var1 + var25 with tf.Session() as sess:
----> 6     print(sess.run(sum2))C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)903     try:904       result = self._run(None, fetches, feed_dict, options_ptr,
--> 905                          run_metadata_ptr)906       if run_metadata:907         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)1120     # Create a fetch handler to take care of the structure of fetches.1121     fetch_handler = _FetchHandler(
-> 1122         self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)1123 1124     # Run request and get response.C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in __init__(self, graph, fetches, feeds, feed_handles)425     """426     with graph.as_default():
--> 427       self._fetch_mapper = _FetchMapper.for_fetch(fetches)428     self._fetches = []429     self._targets = []C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch)251         if isinstance(fetch, tensor_type):252           fetches, contraction_fn = fetch_fn(fetch)
--> 253           return _ElementFetchMapper(fetches, contraction_fn)254     # Did not find anything.255     raise TypeError('Fetch argument %r has invalid type %r' % (fetch,C:\Anaconda\envs\tensorflow16\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)284         raise TypeError('Fetch argument %r has invalid type %r, '285                         'must be a string or Tensor. (%s)' %
--> 286                         (fetch, type(fetch), str(e)))287       except ValueError as e:288         raise ValueError('Fetch argument %r cannot be interpreted as a 'TypeError: Fetch argument 5 has invalid type <class 'int'>, must be a string or Tensor. (Can not convert a int into a Tensor or Operation.)

例2-2 有重载的机制,默认会给运算符重载成op类型

# 例2-2 有重载的机制,默认会给运算符重载成op类型
var1 = 2.0
sum2 = a + var1
with tf.Session() as sess:print(sess.run(sum2))
7.0

4.placeholder

应用场景:训练模型时需要实时提供数据去训练

介绍:

1.placeholder是一个占位符,使用中充当feed_dict字典中的键2.参数:placeholder(dtype,shape = None,name = None)

例1 :placeholder的使用

# 例1 :placeholder的使用
plt = tf.placeholder(tf.float32,[2,3])with tf.Session(config = tf.ConfigProto(log_device_placement = True)) as sess:print(sess.run(plt,feed_dict = {plt:[[1,2,3],[4,5,6]]}))
[[1. 2. 3.][4. 5. 6.]]

例2 :placeholder的使用2(样本行数不固定)

# 例2 :placeholder的使用2(样本行数不固定)
plt = tf.placeholder(tf.float32,[None,3]) # n行3列with tf.Session(config = tf.ConfigProto(log_device_placement = True)) as sess:print(sess.run(plt,feed_dict = {plt:[[1,2,3],[4,5,6],[7,8,9]]}))
[[1. 2. 3.][4. 5. 6.][7. 8. 9.]]

5.返回值异常

RuntimeError: 如果它Session处于无效状态(例如已关闭)。

TypeError:如果fetches或feed_dict键是不合适的类型。

ValueError:如果fetches或feed_dict键无效或引用tensor不存在

http://www.lryc.cn/news/20136.html

相关文章:

  • javaEE 初阶 — 关于 IPv4、IPv6 协议、NAT(网络地址转换)、动态分配 IP 地址 的介绍
  • 《Qt 6 C++开发指南》简介
  • CleanMyMac是什么清理软件?及使用教程
  • Linux小黑板(9):共享内存
  • Detr源码解读(mmdetection)
  • 一个.Net Core开发的,撑起月6亿PV开源监控解决方案
  • C语言数据结构初阶(2)----顺序表
  • K8S常用命令速查手册
  • Linux系统下命令行安装MySQL5.6+详细步骤
  • 13.STM32超声波模块讲解与实战
  • 逆向之Windows PE结构
  • ACL是什么
  • 操作系统核心知识点整理--内存篇
  • 从零开始学习iftop流量监控(找出服务器耗费流量最多的ip和端口)
  • 第一篇博客------自我介绍篇
  • No suitable device found for this connection (device lo not available(网络突然出问题)
  • 【算法设计技巧】分治算法
  • 已解决kettle新建作业,点击保存抛出异常Invalid state, the Connection object is closed.
  • 【设计模式】 工厂模式介绍及C代码实现
  • 深入浅出PaddlePaddle函数——paddle.arange
  • X86 ATT常用寄存器及其操作指令
  • Kotlin 高端玩法之DSL
  • 理光M2701复印机载体初始化方法
  • 2.25Maven的安装与配置
  • 《英雄编程体验课》第 12 课 | 递归
  • 35测试不如狗?是你自己技术不够的怨怼罢了
  • 【代码训练营】day42 | 1049. 最后一块石头的重量 II 494. 目标和 474.一和零
  • Golang协程常见面试题
  • 种群多样性:智能优化算法求解基准测试函数F1-F23种群动态变化图(视频)
  • Qt 中的XML