当前位置: 首页 > news >正文

Linux网络编程系列之UDP广播

Linux网络编程系列  (够吃,管饱)

        1、Linux网络编程系列之网络编程基础

        2、Linux网络编程系列之TCP协议编程

        3、Linux网络编程系列之UDP协议编程

        4、Linux网络编程系列之UDP广播

        5、Linux网络编程系列之UDP组播

        6、Linux网络编程系列之服务器编程——阻塞IO模型

        7、Linux网络编程系列之服务器编程——非阻塞IO模型

        8、Linux网络编程系列之服务器编程——多路复用模型

        9、Linux网络编程系列之服务器编程——信号驱动模型

一、什么是UDP广播

       UDP广播是一种网络通信的方式,在广域网或局域网中,UDP广播可以向多个目标主机发送数据包,使得网络中的所有设备都能接收到广播消息。一定是采用UDP协议。

二、特性

        1、面向无连接:UDP广播不需要建立连接,可以直接发送数据包到目标设备。

        2、广播特性UDP广播可以向一个网络中的所有设备发送数据包。

        3、不可靠性:UDP广播发送的数据包无法保证传输的可靠性,可能会发生数据丢失、错误等情况。

        4、速度快、开销小:UDP广播不需要建立连接,因此传输速度快,开销小,适用于实时流媒体传输等应用场景。

        5、 安全性较低:UDP广播发送的数据包可以被网络中的其他设备接收,可能会存在数据泄露的风险。

        6、适用于广播通信场景:UDP广播适用于需要向网络中所有设备发送数据的场景,比如寻找可用设备传输实时视频或音频数据等。

三、使用场景

        UDP广播主要用于数据的实时传输和设备的发现,常见的应用场景包括:

        1、视频和音频的实时传输:UDP广播可以使得多个设备同时接收到同一流的数据,实现实时的视频会议和音频播放等功能。

        2、网络打印机的自动发现:通过UDP广播,打印机可以向网络中广播自己的存在,从而被所有的设备发现和使用。

        3、多人游戏的联机:UDP广播可以将游戏数据同时发送给所有玩家的设备,实现多人游戏的联机功能。

        4、网络摄像头的实时监控:通过UDP广播,摄像头可以将实时的视频流发送给所有监控软件,使得监控人员能够同时查看视频。

四、UDP广播通信流程

        1、发送方(不一定是服务器或者客户端)

        (1)、建立套接字。使用socket()

        (2)、设置套接字属性为广播。使用setsockopt()

        (3)、绑定自己的IP地址和端口号。使用bind()(可以省略)

        (4)、发送数据,并指定接收方为广播地址。使用sendto()

        (5)、关闭套接字

        2、接收方(不一定是服务器或者客户端)

        (1)、建立套接字。使用socket()

        (2)、设置端口复用。使用setsockopt()(可选,推荐)

        (3)、绑定IP地址为广播地址和端口号。使用bind()(不可以省略)

        (4)、接收数据。使用recvfrom()

        (5)、关闭套接字

五、相关函数API

   1、建立套接字

// 建立套接字 
int socket(int domain, int type, int protocol);// 接口说明返回值:成功返回一个套接字文件描述符,失败返回-1参数domain:用来指定使用何种地址类型,有很多,具体看别的资源(1)PF_INET 或者 AF_INET 使用IPV4网络协议(2)其他很多的,看别的资源参数type:通信状态类型选择,有很多,具体看别的资源(1)SOCK_STREAM    提供双向连续且可信赖的数据流,即TCP(2)SOCK_DGRAM     使用不连续不可信赖的数据包连接,即UDP参数protocol:用来指定socket所使用的传输协议编号,通常不用管,一般设为0

           2、设置端口状态

// 设置端口的状态
int setsockopt(int sockfd, int level, int optname,const void *optval, socklen_t optlen);// 接口说明返回值:成功返回0,失败返回-1参数sockfd:待设置的套接字参数level: 待设置的网络层,一般设成为SOL_SOCKET以存取socket层参数optname:待设置的选项,有很多种,具体看别的资源,这里讲常用的(1)、SO_REUSEADDR    允许在bind()过程中本地地址可复用,即端口复用(2)、SO_BROADCAST    使用广播的方式发送,通常用于UDP广播(3)、SO_SNDBUF       设置发送的暂存区大小(4)、SO_RCVBUF       设置接收的暂存区大小参数optval:待设置的值参数optlen:参数optval的大小,即sizeof(optval)

          3、绑定IP地址和端口号

// 绑定自己的IP地址和端口号int bind(int sockfd, const struct sockaddr *addr,socklen_t addrlen);// 接口说明返回值:参数sockfd:待绑定的套接字参数addrlen:参数addr的大小,即sizeof(addr)参数addr:IP地址和端口的结构体,通用的结构体,根据sockfd的类型有不同的定义当sockfd的domain参数指定为IPV4时,结构体定义为struct sockaddr_in{unsigned short int sin_family;    // 需与sockfd的domain参数一致uint16_t sin_port;            // 端口号struct in_addr sin_addr;      // IP地址 unsigned char sin_zero[8];    // 保留的,未使用};struct in_addr{uin32_t s_addr;}
// 注意:网络通信时,采用大端字节序,所以端口号和IP地址需要调用专门的函数转换成网络字节序

           4、字节序转换接口 

// 第一组接口
// 主机转网络IP地址,输入主机IP地址
uint32_t htonl(uint32_t hostlong);// 主机转网络端口,输入主机端口号
uint16_t htons(uint16_t hostshort);    // 常用// 网络转主机IP,输入网络IP地址
uint32_t ntohl(uint32_t netlong);// 网络转主机端口,输入网络端口
uint16_t ntohs(uint16_t netshort);// 第二组接口,只能用于IPV4转换,IP地址
// 主机转网络
int inet_aton(const char *cp, struct in_addr *inp);// 主机转网络
in_addr_t inet_addr(const char *cp);    // 常用// 网络转主机
int_addr_t inet_network(const char *cp);// 网络转主机
char *inet_ntoa(struct in_addr in);    // 常用

          5、发送数据

// UDP协议发送数据
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,const struct sockaddr *dest_addr, socklen_t addrlen);// 接口说明返回值:成功返回成功发送的字节数,失败返回-1参数sockfd:发送者的套接字参数buf:发送的数据缓冲区参数len:发送的长度参数flags:一般设置为0,还有其他数值,具体查询别的资源参数dest_addr:接收者的网络地址参数addrlen:接收者的网络地址大小,即sizeof(dest_addr)

           6、接收数据

// UDP协议接收数据
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);// 接口说明:返回值:成功返回成功接收的字节数,失败返回-1参数sockfd:接收者的套接字参数buf:接收数据缓的冲区参数len:接收的最大长度参数flags:一般设置为0,还有其他数值,具体查询别的资源参数src_addr:发送者的网络地址,可以设置为NULL参数addrlen:  发送者的网络地址大小,即sizeof(src_addr)

          7、关闭套接字

// 关闭套接字
int close(int fd);// 接口说明返回值:成功返回0,失败返回-1参数fd:套接字文件描述符

六、案例

        实现UDP广播的演示

        发送方BroadcastSend.c

// UDP广播发送方的案例#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>       
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>#define SEND_IP   "192.168.64.128"    // 记得改为自己IP
#define SEND_PORT 10000   // 不能超过65535,也不要低于1000,防止端口误用int main(int argc, char *argv[])
{// 1、建立套接字,使用IPV4网络地址,UDP协议int sockfd = socket(AF_INET, SOCK_DGRAM, 0);if(sockfd == -1){perror("socket fail");return -1;}// 2、设置套接字为广播属性int optval = 1; // 这里设置套接字为广播属性,所以随便写一个值int ret = setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &optval, sizeof(optval));if(ret == -1){perror("setsockopt fail");close(sockfd);return -1;}// 3、绑定自己的IP地址和端口号(可以省略)struct sockaddr_in send_addr = {0};socklen_t addr_len = sizeof(struct sockaddr);send_addr.sin_family = AF_INET;   // 指定协议为IPV4地址协议send_addr.sin_port = htons(SEND_PORT);  // 端口号send_addr.sin_addr.s_addr = inet_addr(SEND_IP); // IP地址ret = bind(sockfd, (struct sockaddr*)&send_addr, addr_len);if(ret == -1){perror("bind fail");close(sockfd);return -1;}// 4、发送数据uint16_t port = 0;  // 端口号char ip[20] = {0};  // IP地址struct sockaddr_in recv_addr = {0};char msg[128] = {0};    // 数据缓冲区// 注意输入广播地址,格式为*.*.*.255printf("please input receiver IP and port\n");scanf("%s %hd", ip, &port);printf("IP = %s, port = %hd\n", ip, port);recv_addr.sin_family = AF_INET;   // 指定用IPV4地址recv_addr.sin_port = htons(port); // 接收者的端口号recv_addr.sin_addr.s_addr = inet_addr(ip);    // 接收者的IP地址while(getchar() != '\n');   // 清空多余的换行符while(1){printf("please input data:\n");fgets(msg, sizeof(msg)/sizeof(msg[0]), stdin);// 发送数据,注意要填写接收者的地址ret = sendto(sockfd, msg, strlen(msg), 0, (struct sockaddr*)&recv_addr, addr_len);if(ret > 0){printf("success: send %d bytes\n", ret);}}// 5、关闭套接字close(sockfd);return 0;
}

        接收方BroadcastRecv.c 

// UDP广播接收方的案例#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>       
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <arpa/inet.h>#define RECV_IP   "192.168.64.255"    // 记得改为广播地址
#define RECV_PORT 20000   // 不能超过65535,也不要低于1000,防止端口误用int main(int argc, char *argv[])
{// 1、建立套接字,使用IPV4网络地址,UDP协议int sockfd = socket(AF_INET, SOCK_DGRAM, 0);if(sockfd == -1){perror("socket fail");return -1;}// 2、设置端口复用(推荐)int optval = 1; // 这里设置为端口复用,所以随便写一个值int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval));if(ret == -1){perror("setsockopt fail");close(sockfd);return -1;}// 3、绑定自己的IP地址和端口号(不可以省略)struct sockaddr_in recv_addr = {0};socklen_t addr_len = sizeof(struct sockaddr);recv_addr.sin_family = AF_INET;   // 指定协议为IPV4地址协议recv_addr.sin_port = htons(RECV_PORT);  // 端口号// recv_addr.sin_addr.s_addr = inet_addr(RECV_IP); // IP地址. 写下面的更好recv_addr.sin_addr.s_addr = htonl(INADDR_ANY);  // 本机内所有的IP地址ret = bind(sockfd, (struct sockaddr*)&recv_addr, addr_len);if(ret == -1){perror("bind fail");close(sockfd);return -1;}// 4、接收数据uint16_t port = 0;  // 端口号char ip[20] = {0};  // IP地址struct sockaddr_in send_addr = {0};char msg[128] = {0};    // 数据缓冲区while(1){// 接收数据,注意使用发送者的地址来接收ret = recvfrom(sockfd, msg, sizeof(msg)/sizeof(msg[0]), 0, (struct sockaddr*)&send_addr, &addr_len);if(ret > 0){memset(ip, 0, sizeof(ip));  // 先清空IPstrcpy(ip, inet_ntoa(send_addr.sin_addr));    // 网络IP转主机IPport = ntohs(send_addr.sin_port); // 网络端口号转主机端口号printf("[%s:%d] send data: %s\n", ip, port, msg);memset(msg, 0, sizeof(msg));    // 清空数据区}}// 5、关闭套接字close(sockfd);return 0;
}

        通信演示

        注:第一幅图由于只有一台电脑不太好演示广播效果,第二幅图用了一台电脑和一个开发板。

七、总结

        UDP广播一定是采用UDP协议的,通信流程跟UDP协议的通信流程差不多,就是要注意设置发送方套接字属性为广播,然后设置接收方的IP地址为广播地址,UDP广播主要用于数据的实时传输和设备的发现。

http://www.lryc.cn/news/194200.html

相关文章:

  • spring中事务相关面试题(自用)
  • 09 | JpaSpecificationExecutor 解决了哪些问题
  • Linux命令(93)之su
  • 1.HTML-HTML解决中文乱码问题
  • Vue3 + Nodejs 实战 ,文件上传项目--实现拖拽上传
  • Windows:VS Code IDE安装ESP-IDF【保姆级】
  • Hadoop3教程(十一):MapReduce的详细工作流程
  • 测试中Android与IOS分别关注的点
  • NLG(自然语言生成)评估指标介绍
  • 苍穹外卖(七) Spring Task 完成订单状态定时处理
  • 【探索Linux】—— 强大的命令行工具 P.11(基础IO,文件操作)
  • 前端练习项目(附带页面psd图片及react源代码)
  • 【从零开始学习Redis | 第三篇】在Java中操作Redis
  • vim、gcc/g++、make/Makefile、yum、gdb
  • 2022最新版-李宏毅机器学习深度学习课程-P13 局部最小值与鞍点
  • ARM架构的基本知识
  • 网络安全(黑客技术)——如何高效自学
  • 云原生场景下高可用架构的最佳实践
  • 图论-最短路径算法-弗洛伊德算法与迪杰斯特拉算法
  • [23] IPDreamer: Appearance-Controllable 3D Object Generation with Image Prompts
  • 深入理解React中的useEffect钩子函数
  • 数字化时代的财务管理:挑战与机遇
  • 网络通信协议-HTTP、WebSocket、MQTT的比较与应用
  • 【深度学习】深度学习实验四——循环神经网络(RNN)、dataloader、长短期记忆网络(LSTM)、门控循环单元(GRU)、超参数对比
  • DB2分区表详解
  • 基本地址变换机构
  • 以单颗CMOS摄像头重构三维场景,维悟光子发布单目红外3D成像模组
  • Jinja2模板注入 | python模板注入特殊属性 / 对象讲解
  • 一致性公式证明
  • allegro中shape的一些基本操作(一)——添加和修改shape