当前位置: 首页 > news >正文

基于MindSpore的llama微调在OpenI平台上运行

基于MindSpore的llama微调在OpenI平台上运行

克隆预训练模型

克隆chatglm-6b代码仓,下载分布式的模型文件

git lfs install
git clone https://huggingface.co/openlm-research/open_llama_7b

准备环境

安装Transformer

pip install transformers

执行转换脚本

python mindformers/models/glm/convert_weight.py --pt_ckpt_path /home/ma-user/work/models/mindspore/pt_glm_6b.pth --ms_ckpt_path ../models/mindspore/ms_glm_6b.ckpt

注意可能会遇到以下错误:

执行转换脚本,得到转换后的输出文件ms_glm_6b.ckpt

解决方法:

export LD_PRELOAD=$LD_PRELOAD:/home/ma-user/anaconda3/envs/MindSpore/lib/python3.7/site-packages/torch/lib/libgomp-d22c30c5.so.1 

原理:找到torch中的libgomp-d22c30c5.so.1 然后赋值给LD_PRELOAD环境变量,这个报错好像只有ARM平台会有

微调训练集准备

微调方式:lora

目前提供alpaca数据集的预处理脚本用于全参微调/lora微调任务。

数据集地址:https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json

alpaca数据集原始格式样例:

# alpaca examples:{"instruction": "Describe a time when you had to make a difficult decision.","input": "","output": "I had to make a difficult decision when I was working as a project manager at a construction company. I was in charge of a project that needed to be completed by a certain date in order to meet the client\u2019s expectations. However, due to unexpected delays, we were not able to meet the deadline and so I had to make a difficult decision. I decided to extend the deadline, but I had to stretch the team\u2019s resources even further and increase the budget. Although it was a risky decision, I ultimately decided to go ahead with it to ensure that the project was completed on time and that the client\u2019s expectations were met. The project was eventually successfully completed and this was seen as a testament to my leadership and decision-making abilities."},{"instruction": "Identify the odd one out.","input": "Twitter, Instagram, Telegram","output": "Telegram"},

执行alpaca_converter.py,使用fastchat工具添加prompts模板,将原始数据集转换为多轮对话格式

# 脚本路径:tools/dataset_preprocess/llama/alpaca_converter.py
# 执行转换脚本
python alpaca_converter.py \
--data_path /home/ma-user/work/data/alpaca_data.json \
--output_path /home/ma-user/work/data/alpaca-data-conversation.json

参数说明

# 参数说明
data_path: 存放alpaca数据的路径
output_path: 输出转换后对话格式的数据路径

转换后的样例:

{"id": "1","conversations": [{"from": "human","value": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nGive three tips for staying healthy.\n\n### Response:"},{"from": "gpt","value": "1.Eat a balanced diet and make sure to include plenty of fruits and vegetables. \n2. Exercise regularly to keep your body active and strong. \n3. Get enough sleep and maintain a consistent sleep schedule."}]},

执行llama_preprocess.py,进行数据预处理、Mindrecord数据生成,将带有prompt模板的数据转换为mindrecord格式。

安装依赖:

pip install "fschat[model_worker,webui]"

执行脚本

# 脚本路径:tools/dataset_preprocess/llama/llama_preprocess.py
# 由于此工具依赖fschat工具包解析prompt模板,请提前安装fschat >= 0.2.13 python = 3.9
python llama_preprocess.py \
--dataset_type qa \
--input_glob /home/ma-user/work/data/alpaca-data-conversation.json \
--model_file /home/ma-user/work/models/open_llama_7b/tokenizer.model \
--seq_length 2048 \
--output_file /home/ma-user/work/models/alpaca-fastchat2048.mindrecord

lora微调

目前lora微调适配了llama_7b模型,并给出了默认配置文件config/llama/run_llama_7b_lora.yaml

  • step 1. 修改配置文件,参考全参微调修改训练数据集路径与预训练权重路径。
  • step 2. 启动lora微调任务。
    注:llama_7b_lora模型支持单卡启动,需将配置文件中的use_parallel参数置为False。

脚本启动

python run_mindformer.py --config=./configs/llama/run_llama_7b_lora.yaml --use_parallel=False --run_mode=finetune

run_llma_7b_lora.yaml

seed: 0
output_dir: './output'  # 当前不支持自定义修改,请勿修改该默认值
load_checkpoint: '/home/ma-user/work/models/mindspore/open_llama_7b_ms.ckpt'
src_strategy_path_or_dir: ''
auto_trans_ckpt: False  # If true, auto transform load_checkpoint to load in distributed model
only_save_strategy: False
resume_training: False
run_mode: 'finetune'# trainer config
trainer:type: CausalLanguageModelingTrainermodel_name: 'llama_7b_lora'# runner config
runner_config:epochs: 1batch_size: 2sink_mode: Truesink_size: 2# optimizer
optimizer:type: FP32StateAdamWeightDecaybeta1: 0.9beta2: 0.95eps: 1.e-8learning_rate: 1.e-4# lr sechdule
lr_schedule:type: CosineWithWarmUpLRlearning_rate: 1.e-4warmup_ratio: 0.03total_steps: -1 # -1 means it will load the total steps of the dataset# dataset
train_dataset: &train_datasetdata_loader:type: MindDatasetdataset_dir: "/home/ma-user/work/models/alpaca-fastchat2048.mindrecord"shuffle: Trueinput_columns: ["input_ids", "labels"]  # "input_ids", "labels" , labels are used in instruction finetune.num_parallel_workers: 8python_multiprocessing: Falsedrop_remainder: Truebatch_size: 2repeat: 1numa_enable: Falseprefetch_size: 1train_dataset_task:type: CausalLanguageModelDatasetdataset_config: *train_dataset
# if True, do evaluate during the training process. if false, do nothing.
# note that the task trainer should support _evaluate_in_training function.
do_eval: False# eval dataset
eval_dataset: &eval_datasetdata_loader:type: MindDatasetdataset_dir: "/home/ma-user/work/models/alpaca-fastchat2048.mindrecord"shuffle: Falseinput_columns: ["input_ids", "labels"]num_parallel_workers: 8python_multiprocessing: Falsedrop_remainder: Falserepeat: 1numa_enable: Falseprefetch_size: 1
eval_dataset_task:type: CausalLanguageModelDatasetdataset_config: *eval_datasetuse_parallel: False
# parallel context config
parallel:parallel_mode: 1 # 0-data parallel, 1-semi-auto parallel, 2-auto parallel, 3-hybrid parallelgradients_mean: Falseenable_alltoall: Falsefull_batch: Truesearch_mode: "sharding_propagation"enable_parallel_optimizer: Falsestrategy_ckpt_save_file: "./ckpt_strategy.ckpt"parallel_optimizer_config:gradient_accumulation_shard: Falseparallel_optimizer_threshold: 64
# default parallel of device num = 8 910A
parallel_config:data_parallel: 8model_parallel: 1pipeline_stage: 1use_seq_parallel: Falseoptimizer_shard: Falsemicro_batch_num: 1vocab_emb_dp: Truegradient_aggregation_group: 4
# when model parallel is greater than 1, we can set micro_batch_interleave_num=2, that may accelerate the train process.
micro_batch_interleave_num: 1# recompute config
recompute_config:recompute: Trueselect_recompute: Falseparallel_optimizer_comm_recompute: Falsemp_comm_recompute: Truerecompute_slice_activation: True# callbacks
callbacks:- type: MFLossMonitor- type: CheckpointMointorprefix: "llama_7b_lora"save_checkpoint_steps: 20000integrated_save: Falseasync_save: False- type: ObsMonitor# mindspore context init config
context:mode: 0 #0--Graph Mode; 1--Pynative Modedevice_target: "Ascend"enable_graph_kernel: Falsegraph_kernel_flags: "--disable_expand_ops=Softmax,Dropout --enable_parallel_fusion=true --reduce_fuse_depth=8 --enable_auto_tensor_inplace=true"max_call_depth: 10000max_device_memory: "31GB"save_graphs: Falsesave_graphs_path: "./graph"device_id: 0# model config
model:model_config:type: LlamaConfigbatch_size: 1 # add for increase predictseq_length: 2048hidden_size: 4096num_layers: 32num_heads: 32vocab_size: 32000multiple_of: 256rms_norm_eps: 1.0e-6bos_token_id: 1eos_token_id: 2pad_token_id: 0ignore_token_id: -100compute_dtype: "float16"layernorm_compute_dtype: "float32"softmax_compute_dtype: "float16"rotary_dtype: "float16"param_init_type: "float16"use_past: Falsepretrain_seqlen: 2048 # seqlen of the pretrain checkpoint: 2048 for llama and 4096 for llama2extend_method: "None" # support "None", "PI", "NTK"compute_in_2d: Falseuse_flash_attention: Falseoffset: 0use_past_shard: Falsecheckpoint_name_or_path: "llama_7b_lora"repetition_penalty: 1max_decode_length: 512top_k: 3top_p: 1do_sample: Falsepet_config:pet_type: lora# configuration of lorain_channels: 4096out_channels: 4096lora_rank: 16lora_alpha: 16lora_dropout: 0.05arch:type: LlamaForCausalLMWithLoraprocessor:return_tensors: mstokenizer:unk_token: '<unk>'bos_token: '<s>'eos_token: '</s>'pad_token: '<pad>'type: LlamaTokenizer# metric
metric:type: PerplexityMetric# wrapper cell config
runner_wrapper:type: MFTrainOneStepCellscale_sense:type: DynamicLossScaleUpdateCellloss_scale_value: 4294967296scale_factor: 2scale_window: 1000use_clip_grad: Trueeval_callbacks:- type: ObsMonitorauto_tune: False
filepath_prefix: './autotune'
autotune_per_step: 10profile: False
profile_start_step: 1
profile_stop_step: 10
init_start_profile: False
profile_communication: False
profile_memory: True
layer_scale: False
layer_decay: 0.65
lr_scale_factor: 256# cfts init config
remote_save_url: "Please input obs url on AICC platform."
http://www.lryc.cn/news/193760.html

相关文章:

  • P34~36第八章相量法
  • WAF绕过-漏洞发现之代理池指纹探针 47
  • 模型预测控制(MPC)中考虑约束中的不确定性(Matlab代码实现)
  • 校招C#面试题整理—Unity客户端
  • 【数字IC设计】利用Design Compiler评估动态功耗
  • Docker Compose命令讲解+文件编写
  • Linux bash: ipconfig: command not found解决方法
  • 【面试算法——动态规划 21】正则表达式匹配(hard) 交错字符串
  • 基于Python实现的神经网络分类MNIST数据集
  • 设计模式之是简单工厂模式
  • Java应用的混淆、加密以及加壳
  • 【Linux】:Linux中Shell命令及其运行原理/权限的理解
  • 传统项目管理与敏捷项目管理
  • 只要掌握Win32应用程序错误的来龙去脉,就没必要惊慌失措
  • ABB机器人关于重定位移动讲解
  • Ceph介绍与部署
  • sklearn 机器学习基本用法
  • Ionic4 生命周期钩子函数和angular生命周期钩子函数介绍
  • Hive+Flume+Kafka章节测试六错题总结
  • 【随笔】论多线程CPU离线渲染器的实现:A CPU BASED OFFLINE RENDERING ENGINE
  • 多输入多输出 | MATLAB实现CNN-GRU-Attention卷积神经网络-门控循环单元结合SE注意力机制的多输入多输出预测
  • Ubuntu:Arduino IDE 开发环境配置【保姆级】
  • Kafka 开启SASL/SCRAM认证 及 ACL授权(三)验证
  • Pycharm 2023 设置远程调试
  • asp.net core在其他程序集获取HttpContext
  • UWB NI框架嵌入式实现——Qorvo示例
  • Linux OS源的问题记录
  • 数据库:Hive转Presto(五)
  • SQL中for xml path 的用法
  • 【TensorFlow2 之014】在 TF 2.0 中实现 LeNet-5