当前位置: 首页 > news >正文

Denoising diffusion implicit models 阅读笔记

Denoising diffusion probabilistic models (DDPMs)从马尔科夫链中采样生成样本,需要迭代多次,速度较慢。Denoising diffusion implicit models (DDIMs)的提出是为了加速采样过程,减少迭代的次数,并且要求DDIM可以复用DDPM训练的网络。
加速采样的基本思路是,DDPM的生成过程需要从 [ T , ⋯ , 1 ] [T,\cdots,1] [T,,1]的序列逐步采样,DDIM则可以从 [ T , ⋯ , 1 ] [T,\cdots,1] [T,,1]的子序列采样来生成,通过跳步的方式减少采样的步数。

非马尔科夫的前向过程

DDPM中推理分布(inference distribution) q ( x 1 : T ∣ x 0 ) q(\mathbf x_{1:T}|\mathbf x_0) q(x1:Tx0)是固定的马尔科夫链。DDIM的作者考虑构造新的推理分布,该推理过程和DDPM优化相同的目标,但能产生新的生成过程。
在这里插入图片描述
考虑一个推理分布族Q,由实向量 σ ∈ R ≥ 0 T \sigma \in \mathbb{R}^T_{\ge 0} σR0T索引:
在这里插入图片描述
根据上面的定义有 q σ ( x t ∣ x 0 ) = N ( α t x 0 , ( 1 − α t ) I ) q_{\sigma}(\mathbf x_t | \mathbf x_0) = \mathcal{N}(\sqrt{\alpha_t}\mathbf x_0, (1-\alpha_t)I) qσ(xtx0)=N(αt x0,(1αt)I)
对应的前向过程也是高斯分布:
在这里插入图片描述
通过上面定义的推理过程,前向过程变成了非马尔科夫的,因为每一步都依赖 x 0 \mathbf x_0 x0
参数 σ \sigma σ控制前向过程的随机性,如果 σ → 0 \sigma \rightarrow 0 σ0,那么在已知 x 0 \mathbf x_0 x0和其中任一个 x t \mathbf x_t xt的情况下, x t − 1 \mathbf x_{t-1} xt1是固定的。

根据上面的推理过程,定义需要学习的生成过程为:
在这里插入图片描述
其中
在这里插入图片描述

根据上面的定义的推理过程和生成过程,优化的目标是
在这里插入图片描述
可以证明该优化目标和特定情况下DDPM的优化目标相同。

逆向生成过程的采样方法如下:
在这里插入图片描述
选择不同的 σ \sigma σ值会导致不同的生成过程,但它们使用相同的 ϵ θ \epsilon_{\theta} ϵθ模型。
如果 σ t = ( 1 − α t − 1 ) / ( 1 − α t ) ( 1 − α t ) / ( 1 − α t − 1 ) \sigma_t=\sqrt{(1-\alpha_{t-1})/(1-\alpha_{t})}\sqrt{(1-\alpha_{t})/(1-\alpha_{t-1})} σt=(1αt1)/(1αt) (1αt)/(1αt1) ,那么前向过程又变成了马尔科夫的,生成过程和DDPM一样。
如果 σ t = 0 \sigma_t=0 σt=0,那么随机噪声前的系数是0, x 0 \mathbf x_0 x0 x T \mathbf x_T xT之间的关系是固定的,这属于隐概率模型(implicit probabilistic model)。因此,作者把这种情况称为denoising diffusion implicit model (DDIM)。

加速

为了加速采样,作者考虑下面的推理过程:
在这里插入图片描述
其中 τ \tau τ是长度为S的 [ 1 , ⋯ , T ] [1,\cdots,T] [1,,T]的子序列, τ S = T \tau_S=T τS=T τ ‾ : = { 1 , … , T } \ τ \overline{\tau}:=\{1,\ldots,T \} \backslash \tau τ:={1,,T}\τ是除去子序列剩下的序号。
定义
在这里插入图片描述该推理分布对应的生成过程如下:
在这里插入图片描述
定义需要学习的概率为:
在这里插入图片描述
根据上面的定义的推理过程和生成过程,优化的目标是
在这里插入图片描述
可以证明该优化目标和特定情况下DDPM的优化目标相同。
因此,可以利用DDPM训练的网络,但是从子序列采样生成图像。

http://www.lryc.cn/news/175345.html

相关文章:

  • 【Java 基础篇】Executors工厂类详解
  • SpringBoot MongoDB操作封装
  • PyTorch 模型性能分析和优化 — 第 1 部分
  • Unity3D 简易音频管理器
  • 【李沐深度学习笔记】线性回归
  • 微信收款码费率0.38太坑了
  • 【学习笔记】CF1103D Professional layer
  • vue之Pinia
  • antd-vue 级联选择器默认值不生效解决方案
  • 分享53个Python源码源代码总有一个是你想要的
  • 【每日一题】658. 找到 K 个最接近的元素
  • 并发任务队列(字节青训测试题)
  • Ubuntu 安装Nacos
  • CSS 小球随着椭圆移动
  • 【李沐深度学习笔记】线性代数
  • vuejs - - - - - 递归组件的实现
  • 精准对接促合作:飞讯受邀参加市工信局举办的企业供需对接会
  • 数学建模之遗传算法
  • ISO9001认证常见的不符合项
  • crypto:看我回旋踢
  • Springcloud实战之自研分布式id生成器
  • java 企业工程管理系统软件源码 自主研发 工程行业适用
  • Spring Cloud Alibaba Nacos 2.2.3 (4) - 本地源码编译 调试
  • WKB近似
  • LeetCode算法二叉树—108. 将有序数组转换为二叉搜索树
  • 如何设置 Git 短命令
  • virtualbox无界面打开linux虚拟机的bat脚本,以及idea(代替Xshell)连接linux虚拟机的方法
  • mockito 的 InjectMocks 和 Mock 有什么区别?
  • 网络工程师的爬虫技术之路:跨界电商与游戏领域的探索
  • 【TCP】确认应答 与 超时重传