当前位置: 首页 > news >正文

【Java 基础篇】Executors工厂类详解

在这里插入图片描述

在多线程编程中,线程池是一项重要的工具,它可以有效地管理和控制线程的生命周期,提高程序的性能和可维护性。Java提供了java.util.concurrent包来支持线程池的创建和管理,而Executors工厂类是其中的一部分,它提供了一些方便的方法来创建不同类型的线程池。本文将详细介绍Executors工厂类的使用方法和各种线程池的创建方式,以及一些注意事项和最佳实践。

Executors工厂类概述

Executors是Java中用于创建线程池的工厂类,它提供了一系列的静态工厂方法,用于创建不同类型的线程池。这些工厂方法隐藏了线程池的复杂性,使得线程池的创建变得非常简单。Executors工厂类提供的线程池有以下几种类型:

  1. newCachedThreadPool():创建一个可缓存的线程池。这个线程池的线程数量可以根据需要自动扩展,如果有可用的空闲线程,就会重用它们;如果没有可用的线程,就会创建一个新线程。适用于执行大量的短期异步任务。

  2. newFixedThreadPool(int nThreads):创建一个固定大小的线程池,其中包含指定数量的线程。线程数量是固定的,不会自动扩展。适用于执行固定数量的长期任务。

  3. newSingleThreadExecutor():创建一个单线程的线程池。这个线程池中只包含一个线程,用于串行执行任务。适用于需要按顺序执行任务的场景。

  4. newScheduledThreadPool(int corePoolSize):创建一个固定大小的线程池,用于定时执行任务。线程数量固定,不会自动扩展。适用于定时执行任务的场景。

  5. newSingleThreadScheduledExecutor():创建一个单线程的定时执行线程池。只包含一个线程,用于串行定时执行任务。

  6. newWorkStealingPool(int parallelism):创建一个工作窃取线程池,线程数量根据CPU核心数动态调整。适用于CPU密集型的任务。

接下来,我们将详细介绍每种类型线程池的创建和使用方法。

newCachedThreadPool()

newCachedThreadPool()方法创建一个可缓存的线程池,这个线程池的特点是线程数量可以根据需要自动扩展,如果有可用的空闲线程,就会重用它们;如果没有可用的线程,就会创建一个新线程。这种线程池适用于执行大量的短期异步任务,例如一些需要快速响应的网络请求处理。

创建方式

ExecutorService executorService = Executors.newCachedThreadPool();

使用示例

public class CachedThreadPoolExample {public static void main(String[] args) {ExecutorService executorService = Executors.newCachedThreadPool();for (int i = 0; i < 10; i++) {final int taskId = i;executorService.submit(() -> {System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());});}executorService.shutdown();}
}

在上面的示例中,我们创建了一个可缓存的线程池,并提交了10个任务,线程池会根据需要自动创建新线程来执行这些任务。

newFixedThreadPool(int nThreads)

newFixedThreadPool(int nThreads)方法创建一个固定大小的线程池,其中包含指定数量的线程。线程数量是固定的,不会自动扩展。这种线程池适用于执行固定数量的长期任务,例如服务器中的后台处理任务。

创建方式

int nThreads = 5; // 指定线程数量
ExecutorService executorService = Executors.newFixedThreadPool(nThreads);

使用示例

public class FixedThreadPoolExample {public static void main(String[] args) {int nThreads = 3;ExecutorService executorService = Executors.newFixedThreadPool(nThreads);for (int i = 0; i < 10; i++) {final int taskId = i;executorService.submit(() -> {System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());});}executorService.shutdown();}
}

在上面的示例中,我们创建了一个固定大小为3的线程池,然后提交了10个任务。线程池会按顺序执行这些任务,每次最多有3个任务同时执行。

newSingleThreadExecutor()

newSingleThreadExecutor()方法创建一个单线程的线程池,这个线程池中只包含一个线程,用于串行执行任务。这种线程池适用于需要按顺序执行任务的场景,例如一个任务队列中的任务需要依次执行。

创建方式

ExecutorService executorService = Executors.newSingleThreadExecutor();

使用示例

public class SingleThreadExecutorExample {public static void main(String[] args) {ExecutorService executorService = Executors.newSingleThreadExecutor();for (int i = 0; i < 10; i++) {final int taskId = i;executorService.submit(() -> {System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());});}executorService.shutdown();}
}

在上面的示例中,我们创建了一个单线程的线程池,并提交了10个任务。线程池会按顺序执行这些任务,保证每次只有一个任务在执行。

newScheduledThreadPool(int corePoolSize)

newScheduledThreadPool(int corePoolSize)方法创建一个固定大小的线程池,用于定时执行任务。线程数量是固定的,不会自动扩展。这种线程池适用于需要定时执行任务的场景,例如定时任务调度。

创建方式

int corePoolSize = 2; // 指定线程数量
ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(corePoolSize);

使用示例

import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;public class ScheduledThreadPoolExample {public static void main(String[] args) {int corePoolSize = 2;ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(corePoolSize);for (int i = 0; i < 3; i++) {final int taskId = i;scheduledExecutorService.schedule(() -> {System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());}, i + 1, TimeUnit.SECONDS);}scheduledExecutorService.shutdown();}
}

在上面的示例中,我们创建了一个固定大小为2的定时执行线程池,然后提交了3个定时任务,每个任务延迟执行的时间不同。

newSingleThreadScheduledExecutor()

newSingleThreadScheduledExecutor()方法创建一个单线程的定时执行线程池,只包含一个线程,用于串行定时执行任务。

创建方式

ScheduledExecutorService scheduledExecutorService = Executors.newSingleThreadScheduledExecutor();

使用示例

import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;public class SingleThreadScheduledExecutorExample {public static void main(String[] args) {ScheduledExecutorService scheduledExecutorService = Executors.newSingleThreadScheduledExecutor();for (int i = 0; i < 3; i++) {final int taskId = i;scheduledExecutorService.schedule(() -> {System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());}, i + 1, TimeUnit.SECONDS);}scheduledExecutorService.shutdown();}
}

在上面的示例中,我们创建了一个单线程的定时执行线程池,并提交了3个定时任务,每个任务延迟执行的时间不同。

newWorkStealingPool(int parallelism)

newWorkStealingPool(int parallelism)方法创建一个工作窃取线程池,线程数量根据CPU核心数动态调整。这种线程池适用于CPU密集型的任务,可以充分利用多核CPU的性能。

创建方式

int parallelism = Runtime.getRuntime().availableProcessors(); // 获取CPU核心数
ExecutorService executorService = Executors.newWorkStealingPool(parallelism);

使用示例

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;public class WorkStealingPoolExample {public static void main(String[] args) {int parallelism = Runtime.getRuntime().availableProcessors();ExecutorService executorService = Executors.newWorkStealingPool(parallelism);for (int i = 0; i < 10; i++) {final int taskId = i;executorService.submit(() -> {System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());});}executorService.shutdown();}
}

在上面的示例中,我们根据CPU核心数创建了一个工作窃取线程池,并提交了10个任务。线程池会根据CPU核心数来动态调整线程数量,以充分利用CPU的性能。

总结

Executors工厂类提供了多种线程池的创建方式,可以根据不同的需求选择合适的线程池类型。合理使用线程池可以提高程序的性能和可维护性,但也需要注意线程池的大小和资源管理,避免因线程过多导致的性能下降或资源耗尽问题。希望本文能够帮助读者更好地理解和使用Executors工厂类。

http://www.lryc.cn/news/175344.html

相关文章:

  • SpringBoot MongoDB操作封装
  • PyTorch 模型性能分析和优化 — 第 1 部分
  • Unity3D 简易音频管理器
  • 【李沐深度学习笔记】线性回归
  • 微信收款码费率0.38太坑了
  • 【学习笔记】CF1103D Professional layer
  • vue之Pinia
  • antd-vue 级联选择器默认值不生效解决方案
  • 分享53个Python源码源代码总有一个是你想要的
  • 【每日一题】658. 找到 K 个最接近的元素
  • 并发任务队列(字节青训测试题)
  • Ubuntu 安装Nacos
  • CSS 小球随着椭圆移动
  • 【李沐深度学习笔记】线性代数
  • vuejs - - - - - 递归组件的实现
  • 精准对接促合作:飞讯受邀参加市工信局举办的企业供需对接会
  • 数学建模之遗传算法
  • ISO9001认证常见的不符合项
  • crypto:看我回旋踢
  • Springcloud实战之自研分布式id生成器
  • java 企业工程管理系统软件源码 自主研发 工程行业适用
  • Spring Cloud Alibaba Nacos 2.2.3 (4) - 本地源码编译 调试
  • WKB近似
  • LeetCode算法二叉树—108. 将有序数组转换为二叉搜索树
  • 如何设置 Git 短命令
  • virtualbox无界面打开linux虚拟机的bat脚本,以及idea(代替Xshell)连接linux虚拟机的方法
  • mockito 的 InjectMocks 和 Mock 有什么区别?
  • 网络工程师的爬虫技术之路:跨界电商与游戏领域的探索
  • 【TCP】确认应答 与 超时重传
  • Kubernetes中Pod的扩缩容介绍