当前位置: 首页 > news >正文

时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测

时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测

目录

    • 时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

ICEEMDAN-iMPA-BiLSTM功率/风速预测 基于改进的自适应经验模态分解+改进海洋捕食者算法+双向长短期记忆网络时间序列预测~组合预测
1.分解时避免了传统经验模态分解的一些固有缺陷,效果更佳,并通过改进的海洋捕食者算法对BiLSTM四个参数进行寻优,最后对每个分量建立BiLSTM模型进行预测后叠加集成,全新组合预测,出图多且精美~
2.改进点如下:
通过一个新的自适应参数来控制捕食者移动的步长,并使用非线性参数作为控制参数来平衡NMPA的探索和开发阶段,有效提高其搜索精度与收敛速度。
1⃣️直接替换excel数据即可用 适合新手小白
2⃣️附赠案例数据 可直接运行

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测
%%  参数设置
%% 训练模型
%% 模型预测%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% ELMTRAIN Create and Train a Extreme Learning Machine
% Syntax
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% Description
% Input
% P   - Input Matrix of Training Set  (R*Q)
% T   - Output Matrix of Training Set (S*Q)
% N   - Number of Hidden Neurons (default = Q)
% TF  - Transfer Function:
%       'sig' for Sigmoidal function (default)
%       'sin' for Sine function
%       'hardlim' for Hardlim function
% TYPE - Regression (0,default) or Classification (1)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Output
% IW  - Input Weight Matrix (N*R)
% B   - Bias Matrix  (N*1)
% LW  - Layer Weight Matrix (N*S)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Example
% Regression:
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Classification
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% See also ELMPREDICT
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 2error('ELM:Arguments','Not enough input arguments.');
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 3N = size(P,2);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 4TF = 'sig';
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 5TYPE = 0;
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if size(P,2) ~= size(T,2)error('ELM:Arguments','The columns of P and T must be same.');
end
[R,Q] = size(P);
if TYPE  == 1T  = ind2vec(T);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[S,Q] = size(T);
% Randomly Generate the Input Weight Matrix
IW = rand(N,R) * 2 - 1;
% Randomly Generate the Bias Matrix
B = rand(N,1);
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
BiasMatrix = repmat(B,1,Q);
% Calculate the Layer Output Matrix H
tempH = IW * P + BiasMatrix;
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
switch TFcase 'sig'H = 1 ./ (1 + exp(-tempH));case 'sin'H = sin(tempH);case 'hardlim'H = hardlim(tempH);
end
% Calculate the Output Weight Matrix
LW = pinv(H') * T';
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

http://www.lryc.cn/news/161487.html

相关文章:

  • 二叉树(上)
  • Excel怎么批量生成文件夹
  • c++ 学习之 静态成员变量和静态成员函数
  • C程序需要按下回车键才能读取字符
  • x86体系结构(WinDbg学习笔记)
  • Hadoop的第二个核心组件:MapReduce框架第四节
  • 算法通关村第十九关——最少硬币数
  • Linux ifconfig只显示 lo 网卡,没有ens网卡解决方案
  • Java复习-26-枚举
  • NLP(六十八)使用Optimum进行模型量化
  • Tomcat多实例和负载均衡动静分离
  • 企业ERP和泛微OA集成场景分析
  • 31 WEB漏洞-文件操作之文件包含漏洞全解
  • qmake.exe xxx.pro -spec win32-g++ 作用
  • SpringMVC实现增删改查
  • React 配置别名 @ ( js/ts 项目中通过 webpack.config.js 配置)
  • Android 在TextView前面添加多个任意View且不影响换行
  • 字符串相加
  • uni-app直播从0到1实战
  • Python UI自动化 —— pytest常用运行参数解析、pytest执行顺序解析
  • LeetCode刷题笔记【25】:贪心算法专题-3(K次取反后最大化的数组和、加油站、分发糖果)
  • java基础面试题 第四天
  • postgresql-常用日期函数
  • 【业务场景】用户连点
  • zabbix企业微信告警
  • (高频面试1)Redis缓存穿透、缓存击穿、缓存雪崩
  • c++推箱子小游戏
  • SpringMVC:从入门到精通
  • jmeter 数据库连接配置 JDBC Connection Configuration
  • TVC广告片制作成本多少