当前位置: 首页 > news >正文

机器学习实战-系列教程5:手撕线性回归4之非线性回归(项目实战、原理解读、源码解读)

🌈🌈🌈机器学习 实战系列 总目录

本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

手撕线性回归1之线性回归类的实现
手撕线性回归2之单特征线性回归
手撕线性回归3之多特征线性回归
手撕线性回归4之非线性回归

11、非线性模型

当得到一个回归方程会,得到一条直线来拟合这个数据的统计规律,但是实际中用这样的简单直线很显然并不能拟合出统计规律,所谓线性回归比如两个变量之间关系就直接用一条直线来拟合,2个变量和一个1个变量的关系就用一个平面来拟合。在数学就是一个一元一次和多元一次函数的映射。非线性就是有多次,也就是说不再是一个直线了,可能是二次或者更高,也可以用三角函数来进行非线性变换。

11.1 读入数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from linear_regression import LinearRegression
data = pd.read_csv('../data/non-linear-regression-x-y.csv')
x = data['x'].values.reshape((data.shape[0], 1))
y = data['y'].values.reshape((data.shape[0], 1))
data.head(10)
plt.plot(x, y)
plt.show()
  1. 导包
  2. 读入数据
  3. 得到x数据
  4. 得到y数据
  5. 取前10个
  6. 将x和y画图

打印结果:
在这里插入图片描述

11.2 多项式非线性变换函数

polynomial_degree是一个下面generate_polynomials这个多项式函数需要设置的参数
不同的参数产生的数据是怎样的呢?
如有一个数据[a,b]:
当degree=1时,kernel变换后的数据(仅为增加一个偏置项) 为:[1,a,b]
当degree=2时,kernel变换后的数据为:[1,a,b, a 2 a^2 a2,ab, b 2 b^2 b2]
当degree=3时,kernel变换后的数据为:[1,a,b, a 2 a^2 a2,ab, b 2 , a 2 b , a b 2 , a 3 , b 3 b^2,a^2b,ab^2,a^3,b^3 b2,a2b,ab2,a3,b3]
以此类推

import numpy as np
from .normalize import normalize
def generate_polynomials(dataset, polynomial_degree, normalize_data=False):features_split = np.array_split(dataset, 2, axis=1)dataset_1 = features_split[0]dataset_2 = features_split[1](num_examples_1, num_features_1) = dataset_1.shape(num_examples_2, num_features_2) = dataset_2.shapeif num_examples_1 != num_examples_2:raise ValueError('Can not generate polynomials for two sets with different number of rows')if num_features_1 == 0 and num_features_2 == 0:raise ValueError('Can not generate polynomials for two sets with no columns')if num_features_1 == 0:dataset_1 = dataset_2elif num_features_2 == 0:dataset_2 = dataset_1num_features = num_features_1 if num_features_1 < num_examples_2 else num_features_2dataset_1 = dataset_1[:, :num_features]dataset_2 = dataset_2[:, :num_features]polynomials = np.empty((num_examples_1, 0))for i in range(1, polynomial_degree + 1):for j in range(i + 1):polynomial_feature = (dataset_1 ** (i - j)) * (dataset_2 ** j)polynomials = np.concatenate((polynomials, polynomial_feature), axis=1)if normalize_data:polynomials = normalize(polynomials)[0]return polynomials

11.3 三角函数非线性变换函数

import numpy as np
def generate_sinusoids(dataset, sinusoid_degree):num_examples = dataset.shape[0]sinusoids = np.empty((num_examples, 0))for degree in range(1, sinusoid_degree + 1):sinusoid_features = np.sin(degree * dataset)sinusoids = np.concatenate((sinusoids, sinusoid_features), axis=1)      return sinusoids

11.4 执行线性回归

num_iterations = 50000  
learning_rate = 0.02  
polynomial_degree = 15  
sinusoid_degree = 15  
normalize_data = True  
linear_regression = LinearRegression(x, y, polynomial_degree, sinusoid_degree, normalize_data)
(theta, cost_history) = linear_regression.train( learning_rate, num_iterations)
print('开始损失: {:.2f}'.format(cost_history[0]))
print('结束损失: {:.2f}'.format(cost_history[-1]))
  1. 迭代次数
  2. 学习率
  3. 多项式次数
  4. 三角函数次数
  5. 类实例化成对象
  6. 执行train函数和之前一样
  7. 打印损失

打印结果:

开始损失: 2274.66
结束损失: 35.04

11.5 损失变化过程

theta_table = pd.DataFrame({'Model Parameters': theta.flatten()})plt.plot(range(num_iterations), cost_history)
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.title('Gradient Descent Progress')
plt.show()

这里和之前的过程是一样的,打印结果:
在这里插入图片描述
这里的损失在很早的时候就已经下降的很低了,因为次数设置的过大导致模型过拟合了

11.6 回归线

predictions_num = 1000
x_predictions = np.linspace(x.min(), x.max(), predictions_num).reshape(predictions_num, 1);
y_predictions = linear_regression.predict(x_predictions)
plt.scatter(x, y, label='Training Dataset')
plt.plot(x_predictions, y_predictions, 'r', label='Prediction')
plt.show()

这里的回归线实现过程还是和之前的一样,打印结果:
在这里插入图片描述
这就是用非线性回归实现的最后曲线拟合的结果

手撕线性回归1之线性回归类的实现
手撕线性回归2之单特征线性回归
手撕线性回归3之多特征线性回归
手撕线性回归4之非线性回归

http://www.lryc.cn/news/161427.html

相关文章:

  • 【C语言基础】那些你可能不知道的C语言“潜规则”
  • android framework之Applicataion启动流程分析(三)
  • 使用Scrapy框架集成Selenium实现高效爬虫
  • Maven 和 Gradle 官方文档及相关资料的网址集合
  • docker概念、安装与卸载
  • elasticsearch访问9200端口 提示需要登陆
  • 【深度学习】 Python 和 NumPy 系列教程(一):Python基本数据类型:1、数字(整数、浮点数)及相关运算;2、布尔值
  • 无swing,高级javaSE毕业之贪吃蛇游戏(含模块构建,多线程监听服务)
  • HDD-FAT32 ZIP-FAT32 HDD-FAT16 ZIP-FAT16 HDD-NTFS
  • 王道数据结构编程题 二叉树
  • 登录怎么实现的,密码加密了嘛?使用明文还是暗文,知道怎么加密嘛?
  • Nginx和Tomcat负载均衡实现session共享
  • 【算法题】210. 课程表 II
  • “数据类型不一致”会走索引吗?
  • Leetcode 1572.矩阵对角线元素之和
  • [PG]将一行数据打散成多行数据
  • 二蛋赠书一期:《快捷学习Spring》
  • Threejs汽车展厅
  • LeetCode:207. 课程表、210. 课程表 II(拓扑排序 C++)
  • 如何使用组件
  • Android 13.0 Launcher3定制之双层改单层(去掉抽屉式二)
  • 对卷积的一点具象化理解
  • NV12数据格式转H265编码格式实现过程
  • ubuntu 22.04 深度学习环境配置
  • 支付宝小程序集成mqtt兼容IOS和安卓
  • 在Qt5中SQLite3的使用
  • 使用Docker部署debezium来监控 MySQL 数据库
  • 百度低质量站点怎么办?解决百度低质量站点的方法和工具
  • MSOS604A是德科技keysight MSOS604A示波器
  • 春秋云镜 CVE-2016-0785