当前位置: 首页 > news >正文

【聚类】K-Means聚类

cluster:簇

原理:

这边暂时没有时间具体介绍kmeans聚类的原理。简单来说,就是首先初始化k个簇心;然后计算所有点到簇心的欧式距离,对一个点来说,距离最短就属于那个簇;然后更新不同簇的簇心(簇内所有点的平均值,也就是簇内点的重心);循环往复,直至簇心不变达到规定的迭代次数

python实现

我们这边通过调用sklearn.cluster中的kmeans方法实现kmeans聚类

入门

原始数据的散点图

from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt# 数据
class1 = 1.5 * np.random.randn(100,2) #100个2维点,标准差1.5正态分布
class2 = 1.5*np.random.randn(100,2) + np.array([5,5])#标准正态分布平移5,5# 画出数据的散点图
plt.figure(0,dpi = 300)
plt.scatter(class1[:,0],class1[:,1],c='y',marker='*')
plt.scatter(class2[:,0],class2[:,1],c='k',marker='.')
plt.axis('off')  # 不显示坐标轴
plt.show()

kmeans聚类

#---------------------------kmeans--------------------
# 调用kmeans函数
features = np.vstack((class1,class2))
kmeans = KMeans(n_clusters=2)
kmeans .fit(features)plt.figure(1,dpi = 300)#满足聚类标签条件的行
ndx = np.where(kmeans.labels_==0)
plt.scatter(features[ndx,0],features[ndx,1],c='b',marker='*')ndx = np.where(kmeans.labels_==1)
plt.scatter(features[ndx,0],features[ndx,1],c='r',marker='.')
# 画出簇心
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],c='g',marker='o')plt.axis('off')   # 去除画布边框
plt.show()

进一步:选择簇心k的值 

前面的数据是我们自己创建的,所以簇心k是我们自己可以定为2。但是在实际中,我们不了解数据,所以我们需要根据数据的情况确定最佳的簇心数k。

这是下面用到的数据data11_2.txt【免费】这是kmean聚类中用到的一个数据资源-CSDN文库

簇内离差平方方和与拐点法(不太好判断)

定义w是簇内的点,m_i是簇的重心。

则所有簇的簇内离差平方和的和为J_k = \sum_{i=1}^{k} \sum_{w \in G_i} ||w-m_i||^2。然后通过可视化的方法,找到拐点,认为突然变化的点就是寻找的目标点,因为继续随着k的增加,聚类效果没有大的变化

借助python中的“md = KMeans(i).fit(b),md.inertia_”实现。

import numpy as np
from sklearn.cluster import KMeans
import pylab as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文
a = np.loadtxt('data/data11_2.txt')  # 加载数
b=(a-a.min(axis=0))/(a.max(axis=0)-a.min(axis=0))  # 标准化# 求出k对应的簇内离差平均和的和
SSE = []; K = range(2, len(a)+1)
for i in K:md = KMeans(i).fit(b)SSE.append(md.inertia_)  # 它表示聚类结果的簇内平方误差和(Inertia)# 可视化
plt.figure(1)
plt.title('k值与离差平方和的关系曲线')
plt.plot(K, SSE,'*-');
# 生成想要的 x 轴刻度细化值
x_ticks = np.arange(2, 10, 1)
# 设置 x 轴刻度
plt.xticks(x_ticks)
plt.show()

通过上图可以看出k=3时,是个拐点。所有选择k=3。

轮廓系数法(十分客观)

定义样本点i的轮廓系数S_i = \frac{b_i-a_i}{max(a_i,b_i)},S_i代表样本点i的轮廓系数,a_i代表该点到簇内其他点的距离的均值;b_i分两步,首先计算该点到其他簇内点距离的平均距离,然后将最小值作为b_i。a_i表示了簇内的紧密度,b_i表示了簇间的分散度。

k个簇的总轮廓点系数定义为所有样本点轮廓系数的平均值。因此计算量大

总轮廓系数越接近1,聚类效果越好。簇内平均距离小,簇间平均距离大。

调用sklearn.metrics中的silhouette_score(轮廓分数)函数实现

#程序文件ex11_7.py
import numpy as np
import matplotlib.pyplot  as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
plt.rcParams['font.sans-serif'] = ['SimHei']# 忽略警告
import warnings
# 使用过滤器来忽略特定类型的警告
warnings.filterwarnings("ignore")a = np.loadtxt('data/data11_2.txt')
b=(a-a.min(axis=0))/(a.max(axis=0)-a.min(axis=0))
S = []; K = range(2, len(a))
for i in K:md = KMeans(i).fit(b)labels = md.labels_S.append(silhouette_score(b, labels))
plt.figure(dpi = 300)
plt.title('k值与轮廓系数的关系曲线')
plt.plot(K, S,'*-'); plt.show()

综上两种方法,好像并没有什么最好的方法,离差平均和不好判断,轮廓系数又像上面的情况。感觉综合两种方法比较好 

http://www.lryc.cn/news/158390.html

相关文章:

  • 超图聚类论文阅读2:Last-step算法
  • React 防抖与节流用法
  • 发布 VectorTraits v1.0,它是 C# 下增强SIMD向量运算的类库
  • HCIA自学笔记01-冲突域
  • 3D封装技术发展
  • 探讨下live555用的编程设计模式
  • LeetCode 1123. Lowest Common Ancestor of Deepest Leaves【树,DFS,BFS,哈希表】1607
  • centroen 23版本换界面了
  • Postman 调用 Microsoft Graph API (InsCode AI 创作助手)
  • MySql 游标 触发器
  • 浅谈数据治理中的智能数据目录
  • 算法通关村第十七关:青铜挑战-贪心其实很简单
  • [Vue3 博物馆管理系统] 使用Vue3、Element-plus的Layout 布局构建组图文章
  • 【LeetCode算法系列题解】第36~40题
  • java+ssm+mysql电梯管理系统
  • 最近读书了吗?林曦老师与你分享来自暄桐课堂的读书方法
  • 【AI理论学习】语言模型:从Word Embedding到ELMo
  • 多功能透明屏,在智能家居领域中,有哪些功能特点?显示、连接
  • 【List篇】ArrayList 详解(含图示说明)
  • SSL证书只有收费的吗?有没有免费使用的?
  • 48V轻混技术
  • 机器学习基础算法--回归类型和评价分析
  • MATLAB 软件功能简介
  • deepfm内容理解
  • postgresql-集合运算
  • [持续更新]计算机经典面试题基础篇Day2
  • C++:类和对象(二)
  • Java“牵手”京东商品详情数据,京东商品详情API接口,京东API接口申请指南
  • Fluidd摄像头公网无法正常显示修复一例
  • 【C++ 学习 ⑳】- 详解二叉搜索树