当前位置: 首页 > news >正文

代码随想录NO39 |0-1背包问题理论基础 416.分割等和子集

0-1背包问题理论基础 分割等和子集

  • 1. 0-1背包问题理论基础(二维数组实现)
  • 2. 0-1背包问题理论基础 二(一维数组实现)

1. 0-1背包问题理论基础(二维数组实现)

背包问题一般分为这几种:
在这里插入图片描述
0-1背包问题:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

二维dp数组01背包

  • 确定dp数组以及下标的含义
    对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
  • 确定递推公式
    再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
    那么可以有两个方向推出来dp[i][j],
    • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
    • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
      所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
  • dp数组如何初始化
  • 确定遍历顺序 先遍历物品更好理解。
  • 举例推导dp数组
def test_2_wei_bag_problem1(bag_size, weight, value) -> int: rows, cols = len(weight), bag_size + 1dp = [[0 for _ in range(cols)] for _ in range(rows)]# 初始化dp数组. for i in range(rows): dp[i][0] = 0first_item_weight, first_item_value = weight[0], value[0]for j in range(1, cols): 	if first_item_weight <= j: dp[0][j] = first_item_value# 更新dp数组: 先遍历物品, 再遍历背包. for i in range(1, len(weight)): cur_weight, cur_val = weight[i], value[i]for j in range(1, cols): if cur_weight > j: # 说明背包装不下当前物品. dp[i][j] = dp[i - 1][j] # 所以不装当前物品. else: # 定义dp数组: dp[i][j] 前i个物品里,放进容量为j的背包,价值总和最大是多少。dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight]+ cur_val)print(dp)if __name__ == "__main__": bag_size = 4weight = [1, 3, 4]value = [15, 20, 30]test_2_wei_bag_problem1(bag_size, weight, value)

2. 0-1背包问题理论基础 二(一维数组实现)

def test_1_wei_bag_problem():weight = [1, 3, 4]value = [15, 20, 30]bag_weight = 4# 初始化: 全为0dp = [0] * (bag_weight + 1)# 先遍历物品, 再遍历背包容量for i in range(len(weight)):for j in range(bag_weight, weight[i] - 1, -1):# 递归公式dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print(dp)test_1_wei_bag_problem()

416. 分割等和子集

给你一个 只包含正整数 的非空数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。
    以上分析完,我们就可以套用01背包,来解决这个问题了。
class Solution:def canPartition(self, nums: List[int]) -> bool:target = sum(nums)if target % 2 == 1: return Falsetarget //= 2dp = [0] * 10001for i in range(len(nums)):for j in range(target, nums[i] - 1, -1):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])return target == dp[target]
http://www.lryc.cn/news/1465.html

相关文章:

  • FITC-PEG-FA,荧光素-聚乙二醇-叶酸,FA-PEG-FITC,实验室科研试剂,提供质量检测
  • 简洁易懂:源码+实战讲解Redisson并发锁及看门狗自动续期
  • TCP 三次握手和四次挥手
  • JavaWeb复习
  • P14 PyTorch AutoGrad
  • 前端报表如何实现无预览打印解决方案或静默打印
  • Operating System Course 2 - My OS
  • 离散数学 课时一 命题逻辑的基本概念
  • Word文档带有权限密码怎么办?
  • C++多态
  • 访问学者如何申请美国J1签证?
  • 使用gitlab ci/cd来发布一个.net 项目
  • 笔试题-2023-蔚来-数字芯片设计【纯净题目版】
  • ThreadLocal 详解
  • 【Java 面试合集】重写以及重载有什么区别能简单说说嘛
  • 到底什么是股票委托接口?
  • Linux驱动:VPU
  • 简介Servlet
  • Learning C++ No.7
  • 【MyBatis】第八篇:一级,二级缓存
  • 【大唐杯备考】——5G基站开通与调测(学习笔记)
  • redhat7 忘记root密码,重置办法
  • QML- 对象属性
  • 将.js文件转成vue标签结构的样式
  • 前端知识点复盘
  • 前端JavaScript获取图片文件的真实格式
  • 今天面了一个来华为要求月薪25K,明显感觉他背了很多面试题...
  • 11 Advanced CNN
  • 亿级高并发电商项目---万达商城项目搭建(二)
  • UML术语标准和分类