当前位置: 首页 > news >正文

10 卷积神经网络CNN(基础篇)

文章目录

    • 全连接
    • CNN过程
      • 卷积过程
      • 下采样过程
      • 全连接层
    • 卷积原理
      • 单通道卷积
      • 多通道卷积
      • 改进多通道
    • 总结以及课程代码
      • 卷积改进
        • Padding
        • Stride
      • 下采样过程
        • 大池化层(Max Pooling)
      • 简单卷积神经网络的实现
    • 课程代码

本篇课程来源: 链接
部分文本来源参考: 链接
以及强烈推荐Birandaの

全连接

前篇中的完全由线性层串行而形成的网络层为全连接层,即,对于某一层的每个输出都将作为下一层的输入。即作为下一层而言,每一个输入值和每一个输出值之前都存在权重。

在全连接层中,实际上是把原先空间状态上的信息,转换为了一维的信息,使得原有的空间相对位置所蕴含的信息丢失。

下文仍以MNIST数据集为例。

CNN过程

卷积实际上是把原始图像仍然按照空间的结构来进行保存数据。

在这里插入图片描述

卷积过程

1×28×28指的是C(channle)×W(width)×H(Hight)C(channle) \times W(width) \times H(Hight)C(channle)×W(width)×H(Hight)即通道数 ×\times× 图像宽度 ×\times× 图像高度​,通道可以理解为层数,通过同样大小的多层图像堆叠才形成了最原始的图。

在这里插入图片描述

可以抽象的理解成原先的图是一个立方体性质的,卷积是将立方体的长宽高按照新的比例进行重新分割而成的。

如下图所示,底层是一个3×W×H3 \times W \times H3×W×H的原始图像,卷积的处理是每次对其中一个Patch进行处理,也就是从原数图像的左上角开始依次抽取一个3×W′×H′3 \times W' \times H'3×W×H的图像对其进行卷积,输出一个C′×W′′×H′′C' \times W'' \times H''C×W′′×H′′的子图。

在这里插入图片描述

下采样过程

下采样的目的是减少特征图像的数据量,降低运算需求。在下采样过程中,通道保持不变,图像的宽度和高度发生改变

在这里插入图片描述

全连接层

先将原先多维的卷积结果通过全连接层转为一维的向量,再通过多层全连接层将原向量转变为可供输出的向量。

在前文的卷积过程与下采样过程,实际上是一种特征提取的手段或者过程,真正用于分类的过程是后续的全连接层。

卷积原理

单通道卷积

设定对于规格为1×W×H1 \times W \times H1×W×H的原图,利用一个规格为1×W′×H′1 \times W' \times H'1×W×H的卷积核进行卷积处理的数乘操作。

则需要从原始数据的左上角开始依次选取与核的规格相同(1×W′×H′1 \times W' \times H'1×W×H)的输入数据进行数乘操作,并将求得的数值作为一个Output值进行填充。

在这里插入图片描述
Patch在原图上进行滑动时,每次只滑动一个像素,即包含重复计算的部分

在这里插入图片描述
最后求得的Output的像素矩阵,即是对原图像,在设定的卷积核下的卷积结果,是一个规格为1×W′×H′1 \times W' \times H'1×W×H的图像。

在这里插入图片描述

多通道卷积

对于多通道图像(N×W×HN \times W \times HN×W×H),每一个通道是一个单通道的图像(1×W×H1 \times W \times H1×W×H)都要有一个自己的卷积核(1×W′×H′1 \times W' \times H'1×W×H)来进行卷积。

在这里插入图片描述
对于分别求出来的矩阵,需要再次进行求和才能得到最后的输出矩阵,最终的输出矩阵仍然是一个1×W′×H′1 \times W' \times H'1×W×H的 图像。

在这里插入图片描述
将平面的图像转为立体的角度即如下图

在这里插入图片描述

改进多通道

多通道卷积中,每次只能把NNN个通道转变为1个通道,而无法在通道这个维度进行增加或降低。

因此,为了对通道进行更加灵活的操作,可以将原先N×W×HN \times W \times HN×W×H的图像,利用不同的卷积核对其多次求卷积,由于每次求卷积之后的输出图像为1×W′×H′1 \times W' \times H'1×W×H,若一共求解了MMM次,即可以将此MMM次的求解结果按顺序在通道(Channel)这一维度上进行拼接,以此来形成一个规格为M×W′×H′M \times W' \times H'M×W×H的图像。

在这里插入图片描述

总结以及课程代码

  1. 每个卷积核的通道数与原通道数一致
  2. 卷积核的数量与输出通道数一致
  3. 卷积核的大小与图像大小无关

上述中所提到的卷积核,是指的多通道的卷积核,而非前文中提到的二维的。
综上所述为了使下图所表征的过程成立,即若需要使得原本为n×widthin×heightinn \times width_{in} \times height_{in}n×widthin×heightin的图像转变为一个m×widthout×heightoutm \times width_{out} \times height_{out}m×widthout×heightout的图像,可以利用mmm个大小为n×kernel_sizewidth×kernel_sizeheightn \times kernel\_size_{width} \times kernel\_size_{height}n×kernel_sizewidth×kernel_sizeheight的卷积核。

在这里插入图片描述
则在实际操作中,即可抽象为利用一个四维张量作为卷积核,此四维张量的大小为m×n×kernel_sizewidth×kernel_sizeheightm \times n \times kernel\_size_{width} \times kernel\_size_{height}m×n×kernel_sizewidth×kernel_sizeheight

import torch
in_channels, out_channels = 5, 10
width, height = 100, 100kernel_size = 3 #默认转为3*3,最好用奇数正方形#在pytorch中的数据处理都是通过batch来实现的
#因此对于C*W*H的三个维度图像,在代码中实际上是一个B(batch)*C*W*H的四个维度的图像
batch_size = 1#生成一个四维的随机数
input = torch.randn(batch_size, in_channels, width, height)#Conv2d需要设定,输入输出的通道数以及卷积核尺寸
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size)output = conv_layer(input)print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

输出结果:
在这里插入图片描述

卷积改进

Padding

若对于一个大小为N×NN \times NN×N的原图,经过大小为M×MM \times MM×M的卷积核卷积后,仍然想要得到一个大小为N×NN \times NN×N的图像,则需要对原图进行Padding,即外围填充。

例如,对于一个5×55 \times 55×5的原图,若想使用一个3×33 \times 33×3的卷积核进行卷积,并获得一个同样5×55 \times 55×5的图像,则需要进行Padding,通常外围填充0

在这里插入图片描述

input = [3,4,6,5,7,2,4,6,8,2,1,6,7,8,4,9,7,4,6,2,3,7,5,4,1]#将输入变为B*C*W*H
input = torch.Tensor(input).view(1, 1, 5, 5)#偏置量bias置为false
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)#将卷积核变为CI*CO*W*H
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)#将做出来的卷积核张量,赋值给卷积运算中的权重(参与卷积计算)
conv_layer.weight.data = kernel.dataoutput = conv_layer(input)print(output)

Stride

本质上即是Batch的步长,在Batch进行移动时,每次移动Stride的距离,以此来有效降低图像的宽度与高度。

例如,对于一个5×55 \times 55×5的原图,若想使用一个3×33 \times 33×3的卷积核进行卷积,并获得一个2×22 \times 22×2的图像,则需要进行Stride,且Stride=2

import torch
input = [3,4,6,5,7,2,4,6,8,2,1,6,7,8,4,9,7,4,6,2,3,7,5,4,1]#将输入变为B*C*W*H
input = torch.Tensor(input).view(1, 1, 5, 5)#偏置量bias置为false
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)#将卷积核变为CI*CO*W*H
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)#将做出来的卷积核张量,赋值给卷积运算中的权重(参与卷积计算)
conv_layer.weight.data = kernel.dataoutput = conv_layer(input)print(output)

下采样过程

大池化层(Max Pooling)

对于一个M×MM \times MM×M图像而言,通过最大池化层可以有效降低其宽度和高度上的数据量,例如通过一个N×NN \times NN×N的最大池化层,即将原图分为若干个N×NN \times NN×N大小的子图,并在其中选取最大值填充到输出图中,此时输出图的大小为MN×MN\frac{M}{N} \times \frac{M}{N}NM×NM

在这里插入图片描述

import torch
input = [3,4,6,5,2,4,6,8,1,6,7,8,9,7,4,6]input = torch.Tensor(input).view(1, 1, 4, 4)#kernel_size=2 则MaxPooling中的Stride也为2
maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)output = maxpooling_layer(input)print(output)

简单卷积神经网络的实现

在这里插入图片描述
在这里插入图片描述

class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)self.pooling = torch.nn.MaxPool2d(2)self.fc = torch.nn.Linear(320, 10)def forward(self, x):batch_size = x.size(0)x = self.pooling(F.relu(self.conv1(x)))x = self.pooling(F.relu(self.conv2(x)))x = x.view(batch_size, -1)x = self.fc(x)return x

课程代码

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using classclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)self.pooling = torch.nn.MaxPool2d(2)self.fc = torch.nn.Linear(320, 10)def forward(self, x):# flatten data from (n,1,28,28) to (n, 784)batch_size = x.size(0)x = F.relu(self.pooling(self.conv1(x)))x = F.relu(self.pooling(self.conv2(x)))x = x.view(batch_size, -1) # -1 此处自动算出的是320x = self.fc(x)return xmodel = Net()# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100*correct/total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()
http://www.lryc.cn/news/1429.html

相关文章:

  • Windows下LuaBridge2.8的环境配置及简单应用
  • 每天10个前端小知识 【Day 10】
  • 【LeetCode】1223. 掷骰子模拟
  • SPSS数据分析软件的安装与介绍(附网盘链接)
  • 2022年38女神节大促美妆、珠宝、母婴、保健电商数据回顾
  • Java笔记-线程同步
  • 通过python 调用OpenAI api_key提交问题解答
  • 图表控件LightningChart .NET再破世界纪录,支持实时可视化 1 万亿个数据点
  • 什么是响应性?
  • 黑马】后台管理176-183
  • Typescript - 类型守卫(typeof / in / instanceof / 自定义类型保护的类型谓词)通俗易懂详细教程
  • 6.8 左特征向量
  • 10个自动化测试框架,测试工程师用起来
  • 城市C友会【官方牵头更多的线下交流的机会,你有怎样的期待?】
  • CSDN 编程竞赛二十七期题解
  • RMI攻击中的ServerClient相互攻击反制
  • 值类型和引用类型
  • 后端开发必懂nginx面试40问
  • Redis为什么这么快?
  • 几种实现主题切换的方式
  • Jenkins使用(代码拉取->编译构建->部署上线)
  • IEEE期刊论文投稿前期准备
  • [AAAI 2022] TransFG: A Transformer Architecture for Fine-grained Recognition
  • 机器学习之决策树原理详解、公式推导(手推)、面试问题、简单实例(python实现,sklearn调包)
  • 一文搞懂CAS实现原理——怀玉
  • typora每次复制文档都要附带图片文件夹?学会配置gitee图床
  • Linux--gdb
  • c++11 标准模板(STL)(std::multimap)(二)
  • 【数据结构】二叉排序树——平衡二叉树的调整
  • 03- pandas 数据库可视化 (数据库)