当前位置: 首页 > news >正文

Elasticsearch查询之Disjunction Max Query

前言

Disjunction Max Query 又称最佳 best_fields 匹配策略,用来优化当查询关键词出现在多个字段中,以单个字段的最大评分作为文档的最终评分,从而使得匹配结果更加合理

写入数据

如下的两条例子数据:

docId: 1
title: java python go
content: java scaladocId: 2
title: kubernetes docker
content: java spring python

POST test01/doc/_bulk
{ "index" : { "_id" : "1" } }
{ "title" : "kubernetes docker", "content": "java spring python" }
{ "index" : { "_id" : "2" } }
{ "title" : "java python go", "content": "java scala" }

查询数据

GET test01/_search?
{"query": {"bool": {"should": [{"match": {"title": "java spring"}},{"match": {"content": "java spring"}}]}}
}

结果如下:

{"took" : 2,"timed_out" : false,"_shards" : {"total" : 6,"successful" : 6,"skipped" : 0,"failed" : 0},"hits" : {"total" : 2,"max_score" : 0.5753642,"hits" : [{"_index" : "test01","_type" : "doc","_id" : "2","_score" : 0.5753642,"_source" : {"title" : "java python go","content" : "java scala"}},{"_index" : "test01","_type" : "doc","_id" : "1","_score" : 0.5753642,"_source" : {"title" : "kubernetes docker","content" : "java spring python"}}]}
}

可以看到,两个 doc 的 score 一样,尽管从内容上看 id=1 的 数据更应该排在前面,但默认的排序策略是有可能会导致id=2 的数据排在 id=1 的前面。

原理分析

在 ES 的默认评分策略下,boolean 查询的score是所有 should 条件匹配到的评分相加,下面简化分析一下得分流程,真实评分会比这个复杂,但大致思路一致:

在 id=1 中数据,由于 title 无命中,但 content 匹配到了 2 个关键词,所以得分为 2.

在 id=2 中数据,其 title 命中 1 个关键词 ,并且其 content 也命中一个关键词,所以最后得分也为 2.

从而得出了最终结果两个 doc 的得分一样

dis_max 查询

使用 dis_max查询优化匹配机制,采用单字段最大评分,作为最终的 score

GET test01/_search?
{"query": {"dis_max": {"queries": [{"match": {"title": "java spring"}},{"match": {"content": "java spring"}}]}}
}

结果如下:

{"took" : 4,"timed_out" : false,"_shards" : {"total" : 6,"successful" : 6,"skipped" : 0,"failed" : 0},"hits" : {"total" : 2,"max_score" : 0.5753642,"hits" : [{"_index" : "test01","_type" : "doc","_id" : "1","_score" : 0.5753642,"_source" : {"title" : "kubernetes docker","content" : "java spring python"}},{"_index" : "test01","_type" : "doc","_id" : "2","_score" : 0.2876821,"_source" : {"title" : "java python go","content" : "java scala"}}]}
}

结果已经符合预期了

tie_breaker参数

前面的结果我们看到已经符合预期了,现在如果我们用 dis max 继续查询另一种 case:


GET test01/_search?
{"query": {"dis_max": {"queries": [{"match": {"title": "python scala"}},{"match": {"content": "python scala"}}]}}
}

结果如下:

"hits" : [{"_index" : "test01","_type" : "doc","_id" : "2","_score" : 0.2876821,"_source" : {"title" : "java python go","content" : "java scala"}},{"_index" : "test01","_type" : "doc","_id" : "1","_score" : 0.2876821,"_source" : {"title" : "kubernetes docker","content" : "java spring python"}}]

可以看到两者的评分又一样了,但从实际来说,我们肯定希望 id = 2 的文档的得分更高的,因为其在多个字段中都有命中,但因为 dis max的匹配评分机制,又导致忽略了其他字段的评分的贡献,这个时候就需要进一步优化了,在 dis max 里面可以使用 tie_breaker 参数来控制,tie_breaker的值默认是 0 ,其设置了tie_breaker参数之后,dis max 的工作原理如下:

  1. 从得分最高的匹配子句中获取相关性得分。
  2. 将任何其他匹配子句的分数乘以 tie_breaker 值。
  3. 将最高分数和其他子句相乘的分数进行累加,得到最终的排序 score 值。

改进后的查询语句如下:

GET test01/_search?
{"query": {"dis_max": {"queries": [{"match": {"title": "python scala"}},{"match": {"content": "python scala"}}],"tie_breaker": 0.4}}
}

查询结果:

"hits" : {"total" : 2,"max_score" : 0.40275493,"hits" : [{"_index" : "test01","_type" : "doc","_id" : "2","_score" : 0.40275493,"_source" : {"title" : "java python go","content" : "java scala"}},{"_index" : "test01","_type" : "doc","_id" : "1","_score" : 0.2876821,"_source" : {"title" : "kubernetes docker","content" : "java spring python"}}]}

这样结果就符合我们的预期了

总结

使用dis max 查询可以达到 best_fields 匹配的效果,在某些细分的检索场景下效果更好,但单纯的 dis max 查询会导致忽略其他字段评分贡献,这种一刀切的机制并不是最优的策略,所以需要配合 tie_breaker 参数,来弱化非 best field 子句的评分贡献,从而达到最终的优化效果

http://www.lryc.cn/news/134103.html

相关文章:

  • Lock wait timeout exceeded; try restarting transaction的错误
  • ShardingSphere01-docker环境安装
  • Java代码审计13之URLDNS链
  • 区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测
  • Python面向对象植物大战僵尸
  • 大屏模板,增加自适应(包含websocket)
  • 电商系统架构设计系列(九):如何规划和设计分库分表?
  • 从Web 2.0到Web 3.0,互联网有哪些变革?
  • QT中资源文件resourcefile的使用,使用API完成页面布局
  • 2337. 移动片段得到字符串
  • Java并发编程第5讲——volatile关键字(万字详解)
  • 6.小程序api分类
  • 什么是PPS和TOD时序?授时防护设备是什么?
  • 推荐一款好用的开源视频播放器(免费无广告)
  • STM32 CubeMX (第三步Freertos中断管理和软件定时)
  • Java虚拟机(JVM):堆溢出
  • C语言,Linux,静态库编写方法,makefile与shell脚本的关系。
  • Php“牵手”淘宝商品详情页数据采集方法,淘宝API接口申请指南
  • 如何使用CSS实现一个全屏滚动效果(Fullpage Scroll)?
  • Docker之Compose
  • 安装chromedriver 115,对应chrome版本115(经检验,116也可以使用)
  • 排序算法:插入排序
  • 掌握AI助手的魔法工具:解密Prompt(提示)在AIGC时代的应用「上篇」
  • JMeter - 接口压力测试工具简单使用
  • 【C++入门到精通】C++入门 —— priority_queue(STL)优先队列
  • 静态代码扫描工具 Sonar 配置及使用
  • docker 03(docker 容器的数据卷)
  • 【04】基础知识:typescript中的类
  • CCClippingNode:在游戏中实现遮罩效果、剪切效果,以涂抹糖霜为例,如何更好的实现涂抹效果,提高用户的游戏体验
  • cuda gdb调试