当前位置: 首页 > news >正文

区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测

区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测

目录

    • 区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测。基于分位数回归的双向门控循环单元QRBiGRU的时间序列区间预测
(主要应用于风速,负荷,功率)(Matlab完整程序和数据)
运行环境matlab2020及以上,单变量时间序列预测。
excel数据,方便学习和替换数据。

模型描述

分位数回归是简单的回归,就像普通的最小二乘法一样,但不是最小化平方误差的总和,而是最小化从所选分位数切点产生的绝对误差之和。如果 q=0.50(中位数),那么分位数回归会出现一个特殊情况 - 最小绝对误差(因为中位数是中心分位数)。我们可以通过调整超参数 q,选择一个适合平衡特定于需要解决问题的误报和漏报的阈值。GRU 有两个有两个门,即一个重置门(reset gate)和一个更新门(update gate)。从直观上来说,重置门决定了如何将新的输入信息与前面的记忆相结合,更新门定义了前面记忆保存到当前时间步的量。如果我们将重置门设置为 1,更新门设置为 0,那么我们将再次获得标准 RNN 模型。

程序设计

  • 完整程序和数据获取方式(资源处下载):MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测
% gru
layers = [ ...sequenceInputLayer(inputSize,'name','input')   %输入层设置gruLayer(numhidden_units1,'Outputmode','sequence','name','hidden1') dropoutLayer(0.3,'name','dropout_1')gruLayer(numhidden_units2,'Outputmode','last','name','hidden2') dropoutLayer(0.3,'name','drdiopout_2')fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %quanRegressionLayer('out',i)];
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 参数设定
opts = trainingOptions('adam', ...'MaxEpochs',10, ...'GradientThreshold',1,...'ExecutionEnvironment','cpu',...'InitialLearnRate',0.001, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',2, ...   %2个epoch后学习率更新'LearnRateDropFactor',0.5, ...'Shuffle','once',...  % 时间序列长度'SequenceLength',1,...'MiniBatchSize',24,...'Verbose',0);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%
% 网络训练
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
y = Test.demand;
x = Test{:,3:end};
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 归一化
[xnorm,xopt] = mapminmax(x',0,1);
xnorm = mat2cell(xnorm,size(xnorm,1),ones(1,size(xnorm,2)));
[ynorm,yopt] = mapminmax(y',0,1);
ynorm = ynorm';% 平滑层flattenLayer('Name','flatten')% GRU特征学习gruLayer(50,'Name','gru1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% GRU输出gruLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130447132

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
[3] https://blog.csdn.net/kjm13182345320/article/details/127380096

http://www.lryc.cn/news/134098.html

相关文章:

  • Python面向对象植物大战僵尸
  • 大屏模板,增加自适应(包含websocket)
  • 电商系统架构设计系列(九):如何规划和设计分库分表?
  • 从Web 2.0到Web 3.0,互联网有哪些变革?
  • QT中资源文件resourcefile的使用,使用API完成页面布局
  • 2337. 移动片段得到字符串
  • Java并发编程第5讲——volatile关键字(万字详解)
  • 6.小程序api分类
  • 什么是PPS和TOD时序?授时防护设备是什么?
  • 推荐一款好用的开源视频播放器(免费无广告)
  • STM32 CubeMX (第三步Freertos中断管理和软件定时)
  • Java虚拟机(JVM):堆溢出
  • C语言,Linux,静态库编写方法,makefile与shell脚本的关系。
  • Php“牵手”淘宝商品详情页数据采集方法,淘宝API接口申请指南
  • 如何使用CSS实现一个全屏滚动效果(Fullpage Scroll)?
  • Docker之Compose
  • 安装chromedriver 115,对应chrome版本115(经检验,116也可以使用)
  • 排序算法:插入排序
  • 掌握AI助手的魔法工具:解密Prompt(提示)在AIGC时代的应用「上篇」
  • JMeter - 接口压力测试工具简单使用
  • 【C++入门到精通】C++入门 —— priority_queue(STL)优先队列
  • 静态代码扫描工具 Sonar 配置及使用
  • docker 03(docker 容器的数据卷)
  • 【04】基础知识:typescript中的类
  • CCClippingNode:在游戏中实现遮罩效果、剪切效果,以涂抹糖霜为例,如何更好的实现涂抹效果,提高用户的游戏体验
  • cuda gdb调试
  • 【vim 学习系列文章 5 - cscope 过滤掉某些目录】
  • 实验三 HBase1.2.6安装及配置
  • LightDB sequence支持MAXVALUE最大值与Oracle相同
  • 二、Kafka快速入门