当前位置: 首页 > news >正文

Matlab实现模拟退火算法(附上多个完整源码)

模拟退火算法(Simulated Annealing)是一种全局优化算法,其基本思想是通过模拟物理退火过程来寻找最优解。该算法可以应用于各种优化问题,如函数优化、组合优化、图形优化等。

文章目录

  • 步骤
  • 简单案例
  • 完整仿真源码下载

步骤

在Matlab中实现模拟退火算法,可以按照以下步骤进行:

  1. 定义问题:首先需要定义优化问题,即目标函数和变量范围。例如,可以定义目标函数为f(x,y)=x2+y2,变量范围为-10<=x<=10,-10<=y<=10。

  2. 初始化:随机选择一个初始解x0,计算其对应的目标函数值f(x0)。

  3. 设定温度初始值:设定一个初始温度T0,一般取较高的值,例如100。

  4. 设定温度下降策略:设定一个温度下降策略,例如T(k+1)=0.99*T(k),即每次迭代温度降低1%。

  5. 设定停止条件:设定一个停止条件,例如当温度降低到一定程度或者迭代次数达到一定值时停止迭代。

  6. 迭代求解:在每个温度下,随机生成一个新解x1,计算其对应的目标函数值f(x1)。计算新解与当前解之间的差值Δf=f(x1)-f(x0)。

  7. 判断是否接受新解:根据Metropolis准则,设定一个接受新解的概率p=exp(-Δf/T),如果p大于一个随机数r(0<r<1),则接受新解,否则保留当前解。

  8. 更新当前解:如果接受新解,则更新当前解为x1,否则保留当前解x0。

  9. 重复迭代:重复以上步骤,直至满足停止条件。

简单案例

以下是Matlab代码实现模拟退火算法的示例:

% 定义目标函数
function y = target_func(x)y = x(1)^2 + x(2)^2;
end% 初始化
x0 = [0, 0]; % 初始解
f0 = target_func(x0); % 初始解对应的目标函数值% 设定初始温度和温度下降策略
T0 = 100; % 初始温度
k = 1; % 迭代次数
T = T0; % 当前温度% 设定停止条件
max_iter = 1000; % 最大迭代次数while k < max_iter && T > 1e-3% 生成新解x1 = x0 + randn(1, 2); % 随机生成一个新解f1 = target_func(x1); % 计算新解对应的目标函数值delta_f = f1 - f0; % 计算目标函数值的差值% 判断是否接受新解if delta_f < 0 || exp(-delta_f/T) > rand()x0 = x1; % 接受新解f0 = f1;end% 更新温度T = 0.99*T;k = k + 1;
end% 输出结果
disp(['Optimal solution: (', num2str(x0(1)), ', ', num2str(x0(2)), ')']);
disp(['Optimal value: ', num2str(f0)]);

以上代码演示了如何使用Matlab实现模拟退火算法求解一个二元函数的最小值。在实际应用中,可以根据具体问题来定义目标函数和变量范围,并调整温度下降策略和停止条件等参数,以获得更好的优化效果。

完整仿真源码下载

基于Matlab实现模拟退火(完整源码+HTML界面).rar :https://download.csdn.net/download/m0_62143653/88066595

基于Matlab实现模拟退火算法(完整源码).rar :https://download.csdn.net/download/m0_62143653/87959452

基于Matlab遗传模拟退火算法的聚类算法(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87917112

基于Matlab模拟退火算法工具箱及应用(完整源码).rar :https://download.csdn.net/download/m0_62143653/87917100

基于Matlab模拟退火算法的TSP算法(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87917096

基于Matlab实现模拟退火(完整源码).rar:https://download.csdn.net/download/m0_62143653/87680774

基于Matlab实现模拟退火算法进行路径规划(完整源码).rar:https://download.csdn.net/download/m0_62143653/87864289

基于Matlab实现模拟退火(完整源码).rar:https://download.csdn.net/download/m0_62143653/87803848

http://www.lryc.cn/news/123528.html

相关文章:

  • 前后端分离------后端创建笔记(03)前后端对接(上)
  • stable diffusion安装包和超火使用文档及提示词,数字人网址
  • 训练营:贪心篇
  • 四、Dubbo扩展点加载机制
  • [保研/考研机试] KY103 2的幂次方 上海交通大学复试上机题 C++实现
  • 时序预测 | MATLAB实现基于BP神经网络的时间序列预测-递归预测未来(多指标评价)
  • 组合模式(C++)
  • git上传问题记录
  • 通过动态IP解决网络数据采集问题
  • 可重入锁,不可重入锁,死锁的多种情况,以及产生的原因,如何解决,synchronized采用的锁策略(渣女圣经)自适应的底层,锁清除,锁粗化,CAS的部分应用
  • JSON.parse()和JSON.stringify()用法
  • Android 并发编程--阻塞队列和线程池
  • Playwright快速上手-1
  • PPT颜色又丑又乱怎么办?
  • python计算相关系数R
  • 黑马项目一阶段面试 自我介绍篇
  • 时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测
  • 开发过程中遇到的问题以及解决方法
  • 本地oracle登录账号锁定处理,the account is locked
  • redission自定义hessian序列化
  • P8642 [蓝桥杯 2016 国 AC] 路径之谜
  • oracle sql developer批量删除某个用户
  • k8s 滚动更新控制(一)
  • Java智慧工地APP源码带AI识别
  • ME3116电源小板
  • 摸准天气“小心思”,躲避恶劣天气“偷袭”
  • Golang 局部变量、全局变量 声明
  • 软考高级之系统架构师之数据通信与计算机网络
  • 牛客网华为OD前端岗位,面试题库练习记录01
  • Python web实战之Django 的缓存机制详解