当前位置: 首页 > news >正文

并查集、树状数组

并查集、树状数组、线段树

  • 并查集
  • 树状数组
    • 树状数组1 (单点修改,区间查询)
    • 树状数组2 (单点查询,区间修改)

并查集

【模板】并查集

题目描述

如题,现在有一个并查集,你需要完成合并和查询操作。

输入格式

第一行包含两个整数 N , M N,M N,M ,表示共有 N N N 个元素和 M M M 个操作。

接下来 M M M 行,每行包含三个整数 Z i , X i , Y i Z_i,X_i,Y_i Zi,Xi,Yi

Z i = 1 Z_i=1 Zi=1 时,将 X i X_i Xi Y i Y_i Yi 所在的集合合并。

Z i = 2 Z_i=2 Zi=2 时,输出 X i X_i Xi Y i Y_i Yi 是否在同一集合内,是的输出
Y ;否则输出 N

输出格式

对于每一个 Z i = 2 Z_i=2 Zi=2 的操作,都有一行输出,每行包含一个大写字母,为 Y 或者 N

样例输入 #1

4 7
2 1 2
1 1 2
2 1 2
1 3 4
2 1 4
1 2 3
2 1 4

样例输出 #1

N
Y
N
Y

提示

对于 30 % 30\% 30% 的数据, N ≤ 10 N \le 10 N10 M ≤ 20 M \le 20 M20

对于 70 % 70\% 70% 的数据, N ≤ 100 N \le 100 N100 M ≤ 1 0 3 M \le 10^3 M103

对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 1 0 4 1\le N \le 10^4 1N104 1 ≤ M ≤ 2 × 1 0 5 1\le M \le 2\times 10^5 1M2×105 1 ≤ X i , Y i ≤ N 1 \le X_i, Y_i \le N 1Xi,YiN Z i ∈ { 1 , 2 } Z_i \in \{ 1, 2 \} Zi{1,2}

以下是模板代码

#include<bits/stdc++.h>
using namespace std;
#define MAXN 10005int fa[MAXN]; // 用于存储每个元素所属的集合的根节点// 查找操作,返回元素x所属集合的根节点
int find(int x) {if(x == fa[x]) return x; // 如果当前节点是根节点,直接返回return fa[x] = find(fa[x]); // 路径压缩,将x的父节点直接设为根节点,加快以后的查找
}// 合并操作,将两个集合合并
void join(int c1, int c2) {int f1 = find(c1); // 查找c1所属的集合的根节点int f2 = find(c2); // 查找c2所属的集合的根节点if(f1 != f2) // 如果根节点不同,表示c1和c2不在同一集合中fa[f1] = f2; // 将c1的根节点的父节点设为c2的根节点,即合并两个集合
}int main() {int n, m;cin >> n >> m; // 输入元素个数n和操作个数mfor(int i = 1; i <= n; i++) fa[i] = i; // 初始化,每个元素初始时都是一个单独的集合,根节点就是自己while(m--) {int z, x, y;cin >> z >> x >> y; // 输入操作类型z以及两个元素x和yif(z == 1) {join(x, y); // 合并操作,将x和y所在的集合合并} else {if(find(x) == find(y))cout << "Y" << endl; // 查找操作,如果x和y在同一个集合中,输出Yelsecout << "N" << endl; // 否则输出N}}return 0;
}

树状数组

树状数组1 (单点修改,区间查询)

【模板】树状数组 1

题目描述

如题,已知一个数列,你需要进行下面两种操作:

  • 将某一个数加上 x x x

  • 求出某区间每一个数的和

输入格式

第一行包含两个正整数 n , m n,m n,m,分别表示该数列数字的个数和操作的总个数。

第二行包含 n n n 个用空格分隔的整数,其中第 i i i 个数字表示数列第 i i i 项的初始值。

接下来 m m m 行每行包含 3 3 3 个整数,表示一个操作,具体如下:

  • 1 x k 含义:将第 x x x 个数加上 k k k

  • 2 x y 含义:输出区间 [ x , y ] [x,y] [x,y] 内每个数的和

输出格式

输出包含若干行整数,即为所有操作 2 2 2 的结果。

样例输入 #1

5 5
1 5 4 2 3
1 1 3
2 2 5
1 3 -1
1 4 2
2 1 4

样例输出 #1

14
16

提示

【数据范围】

对于 30 % 30\% 30% 的数据, 1 ≤ n ≤ 8 1 \le n \le 8 1n8 1 ≤ m ≤ 10 1\le m \le 10 1m10
对于 70 % 70\% 70% 的数据, 1 ≤ n , m ≤ 1 0 4 1\le n,m \le 10^4 1n,m104
对于 100 % 100\% 100% 的数据, 1 ≤ n , m ≤ 5 × 1 0 5 1\le n,m \le 5\times 10^5 1n,m5×105

数据保证对于任意时刻, a a a 的任意子区间(包括长度为 1 1 1 n n n 的子区间)和均在 [ − 2 31 , 2 31 ) [-2^{31}, 2^{31}) [231,231) 范围内。

样例说明:

故输出结果14、16

以下是模板代码

#include<bits/stdc++.h>
using namespace std;
const int N = 5e5 + 5;
#define lowbit(x) ((x) & (-x))
int tree[N] = {0}; // 树状数组void update(int x, int d) { // 单点修改:修改元素 a[x],a[x] = a[x] + dwhile (x <= N) {tree[x] += d; // 将当前位置的值增加dx += lowbit(x); // 转到下一个需要修改的位置}
}int sum(int x) { // 查询前缀和:返回前缀和 sum = a[1] + a[2] + ... + a[x]int ans = 0;while (x > 0) {ans += tree[x]; // 累加当前位置的值x -= lowbit(x); // 转到前一个位置}return ans;
}int main() {int n, m, a;cin >> n >> m; // 输入数列数字个数n和操作总个数mfor (int i = 1; i <= n; i++) {cin >> a; // 输入每个数列项的初始值update(i, a); // 初始化计算tree[]数组}while (m--) {int op;cin >> op; // 输入操作类型if (op == 1) {int x, k;cin >> x >> k; // 输入要修改的元素位置x和要加的值kupdate(x, k); // 对位置x的元素进行加法操作} else {int x, y;cin >> x >> y; // 输入查询区间[x, y]cout << sum(y) - sum(x - 1) << endl; // 输出区间内元素和}}return 0;
}

树状数组2 (单点查询,区间修改)

【模板】树状数组 2

题目描述

如题,已知一个数列,你需要进行下面两种操作:

  1. 将某区间每一个数加上 x x x

  2. 求出某一个数的值。

输入格式

第一行包含两个整数 N N N M M M,分别表示该数列数字的个数和操作的总个数。

第二行包含 N N N 个用空格分隔的整数,其中第 i i i 个数字表示数列第 $i $ 项的初始值。

接下来 M M M 行每行包含 2 2 2 4 4 4个整数,表示一个操作,具体如下:

操作 1 1 1: 格式:1 x y k 含义:将区间 [ x , y ] [x,y] [x,y] 内每个数加上 k k k

操作 2 2 2: 格式:2 x 含义:输出第 x x x 个数的值。

输出格式

输出包含若干行整数,即为所有操作 2 2 2 的结果。

样例输入 #1

5 5
1 5 4 2 3
1 2 4 2
2 3
1 1 5 -1
1 3 5 7
2 4

样例输出 #1

6
10

提示

样例 1 解释:

故输出结果为 6、10。


数据规模与约定

对于 30 % 30\% 30% 的数据: N ≤ 8 N\le8 N8 M ≤ 10 M\le10 M10

对于 70 % 70\% 70% 的数据: N ≤ 10000 N\le 10000 N10000 M ≤ 10000 M\le10000 M10000

对于 100 % 100\% 100% 的数据: 1 ≤ N , M ≤ 500000 1 \leq N, M\le 500000 1N,M500000 1 ≤ x , y ≤ n 1 \leq x, y \leq n 1x,yn,保证任意时刻序列中任意元素的绝对值都不大于 2 30 2^{30} 230

以下是模板代码

#include<bits/stdc++.h>
using namespace std;
const int N = 5e5 + 5;
#define lowbit(x) ((x) & (-x))
int tree[N] = {0}; // 树状数组void update(int x, int d) { // 单点修改:修改元素 a[x],a[x] = a[x] + dwhile (x <= N) {tree[x] += d; // 将当前位置的值增加dx += lowbit(x); // 转到下一个需要修改的位置}
}int sum(int x) { // 查询前缀和:返回前缀和 sum = a[1] + a[2] + ... + a[x]int ans = 0;while (x > 0) {ans += tree[x]; // 累加当前位置的值x -= lowbit(x); // 转到前一个位置}return ans;
}int main() {int n, m;int old = 0, a;cin >> n >> m; // 输入数列数字个数n和操作总个数mfor (int i = 1; i <= n; i++) {cin >> a; // 输入每个数列项的初始值update(i, a - old); // 初始化计算tree[]数组,这里是一个差分数组old = a;}while (m--) {int op;cin >> op; // 输入操作类型if (op == 1) {int x, y, k;cin >> x >> y >> k; // 输入要修改的区间[x, y]和要加的值kupdate(x, k);update(y + 1, -k); // 将区间[y+1, n]的值减去k,保持区间[x, y]加上k} else {int x;cin >> x; // 输入要查询的位置xcout << sum(x) << endl; // 输出第x个数的值}}return 0;
}
http://www.lryc.cn/news/121496.html

相关文章:

  • ES6中Null判断运算符(??)正确打开方式-
  • java的内存模型
  • 基于 CentOS 7 构建 LVS-DR 群集 配置nginx负载均衡
  • CSS练习
  • 基于深度学习的3D城市模型增强【Mask R-CNN】
  • LabVIEW对并行机器人结构进行建模仿真
  • 【算法题】1281. 整数的各位积和之差
  • (一)ES6 介绍
  • 窥孔优化(Peephole Optimization)
  • Docker安装ElasticSearch/ES 7.4.0
  • 无涯教程-Perl - readline函数
  • 类与对象(入门)
  • 刷题记录(2023-08-12)
  • GPT内功心法:搜索思维到GPT思维的转换
  • 在WebStorm中通过live-server插件搭建Ajax运行环境
  • 侯捷 C++ part2 兼谈对象模型笔记——1 转换
  • 尚硅谷大数据项目《在线教育之采集系统》笔记003
  • PAT(Advanced Level)刷题指南 —— 第七弹
  • 合宙Air724UG LuatOS-Air script lib API--sys
  • MySQL建表和增添改查
  • @Transactional 注解下,事务失效的七种场景
  • chrome V3 插件开发 基础
  • 【uniapp】uniapp自动导入自定义组件和设置分包:
  • 【深度学习MOT videos detect】Detect to Track and Track to Detect
  • 关于Neo4j的使用及其基本命令
  • 【笔记】树状数组
  • vue全局组件自动注册直接使用,无需单独先引用注册再使用
  • 【HarmonyOS】@ohos.request 上传下载的那些事儿
  • github版面混乱加载不出的解决办法
  • dotNet 之数据库sqlite