当前位置: 首页 > news >正文

python爬虫之scrapy框架介绍

一、Scrapy框架简介

Scrapy 是一个开源的 Python 库和框架,用于从网站上提取数据。它为自从网站爬取数据而设计,也可以用于数据挖掘和信息处理。Scrapy 可以从互联网上自动爬取数据,并将其存储在本地或在 Internet 上进行处理。Scrapy 的目标是提供更简单、更快速、更强大的方式来从网站上提取数据。

二、Scrapy的基本构成

Scrapy 框架由以下五个主要组件构成:

1. Spiders:它是 Scrapy 框架的核心部分,主要用于定义从网站上提取数据的方式。Spider 是一个 Python 类,它定义了如何从特定的网站抓取数据。

2. Items:它用于定义爬取的数据结构,Scrapy 将在爬取过程中自动创建 Item 对象,它们将被进一步处理,例如存储到数据库中。

3. Item Pipeline:它是 Scrapy 框架用于处理 Item 对象的机制。它可以执行诸如数据清洗、验证和存储等操作。

4. Downloader:它是 Scrapy 框架用于下载页面的组件之一。它正在处理网络请求,从互联网上下载页面并将其回传到 Spider 中。

5. Middleware:它是 Scrapy 框架用于处理 Spider、Downloader 和 Item Pipeline 之间交互的组件之一。中间件在这个架构中扮演了一个交换件角色,可以添加、修改或删除请求、响应和 Item 对象。

三、Scrapy框架的运行流程

Scrapy 的运行流程可以分为以下几步:

1. 下载调度器:Scrapy 框架接收 URL 并将其传递给下载调度器。下载调度器负责队列管理和针对每个 URL 的下载请求的优先级。它还可以控制并发请求的总数,从而避免对服务器的过度负载。

2. 下载器:下载器使用 HTTP 请求从互联网上下载 HTML 或其他类型的页面内容。下载器可以通过中间件拦截处理、修改或过滤请求和响应。下载器还可以将下载的数据逐步传递到爬虫中。

3. 爬虫:Spider 接收下载器提供的页面数据,并从中提取有用的信息。Spider 可以通过规则来定义如何从页面中提取数据。Spider 可以将提取的数据传递给 Item Pipeline 进行处理。

4. Item Pipeline:Item Pipeline 进行数据的清洗、验证和存储等操作。它还可以将数据存储到数据库、JSON 或 CSV 文件中。

5. 输出:Scrapy 可以输出爬取的数据到命令行、文件或 JSON 格式。输出可以用于生成各种类型的报告或分析。

四、Scrapy框架的使用

下面我们将介绍如何使用 Scrapy 框架。

1. 安装 Scrapy

Scrapy 框架可以通过 pip 安装。使用以下命令安装 Scrapy:


pip install scrapy
2. 创建 Scrapy 项目

使用以下命令创建 Scrapy 项目:


scrapy startproject project_name

其中,project_name 是项目的名称。

3. 创建 Spider

使用以下命令创建 Spider:

scrapy genspider spider_name domain_name

其中,spider_name 是 Spider 的名称,domain_name 是要爬取的域名。

在 Spider 中,我们可以定义如何从网站上提取数据。下面是一个简单的 Spider 的示例:

import scrapyclass MySpider(scrapy.Spider):name = 'myspider'start_urls = ['http://www.example.com']def parse(self, response):# 提取数据的代码pass

在这个示例中,我们定义了一个 Spider,并指定了它的名称和要爬取的 URL。我们还实现了一个 parse 方法,用于提取页面上的数据。

4. 创建 Item

在 Scrapy 中,我们可以定义自己的数据结构,称为 Item。我们可以使用 Item 类来定义数据结构。下面是一个 Item 的示例:

import scrapyclass MyItem(scrapy.Item):title = scrapy.Field()author = scrapy.Field()content = scrapy.Field()

在这个示例中,我们定义了一个 Item,并定义了三个字段:title、author 和 content。

5. 创建 Item Pipeline

在 Scrapy 中,我们可以定义 Item Pipeline 来处理 Item 对象。Item Pipeline 可以执行以下操作:

  • 清洗 Item 数据
  • 验证 Item 数据
  • 存储 Item 数据

下面是一个简单的 Item Pipeline 的示例:

class MyItemPipeline(object):def process_item(self, item, spider):# 处理 Item 的代码return item

在这个示例中,我们定义了一个 Item Pipeline,并实现了 process_item 方法。

6. 配置 Scrapy

Scrapy 有几个重要的配置选项。其中,最常见的是 settings.py 文件中的选项。下面是一个 settings.py 文件的示例:

BOT_NAME = 'mybot'
SPIDER_MODULES = ['mybot.spiders']
NEWSPIDER_MODULE = 'mybot.spiders'ROBOTSTXT_OBEY = TrueDOWNLOADER_MIDDLEWARES = {'mybot.middlewares.MyCustomDownloaderMiddleware': 543,
}ITEM_PIPELINES = {'mybot.pipelines.MyCustomItemPipeline': 300,
}

在这个示例中,我们定义了一些重要的选项,包括 BOT_NAME、SPIDER_MODULES、NEWSPIDER_MODULE、ROBOTSTXT_OBEY、DOWNLOADER_MIDDLEWARES 和 ITEM_PIPELINES。

7. 运行 Scrapy

使用以下命令运行 Scrapy:

scrapy crawl spider_name

其中,spider_name 是要运行的 Spider 的名称。

五、Scrapy框架的案例

下面我们来实现一个简单的 Scrapy 框架的案例。

1. 创建 Scrapy 项目

使用以下命令创建 Scrapy 项目:

scrapy startproject quotes

我们将项目名称设置为 quotes。

2. 创建 Spider

使用以下命令创建 Spider:

scrapy genspider quotes_spider quotes.toscrape.com

其中,quotes_spider 是 Spider 的名称,quotes.toscrape.com 是要爬取的域名。

在 Spider 中,我们定义如何从网站上提取数据。下面是一个 quotes_spider.py 文件的示例:

import scrapyclass QuotesSpider(scrapy.Spider):name = "quotes"def start_requests(self):urls = ['http://quotes.toscrape.com/page/1/','http://quotes.toscrape.com/page/2/',]for url in urls:yield scrapy.Request(url=url, callback=self.parse)def parse(self, response):for quote in response.css('div.quote'):yield {'text': quote.css('span.text::text').get(),'author': quote.css('span small::text').get(),'tags': quote.css('div.tags a.tag::text').getall(),}next_page = response.css('li.next a::attr(href)').get()if next_page is not None:yield response.follow(next_page, self.parse)

在这个示例中,我们定义了一个 Spider,并指定了它的名称。我们还实现了 start_requests 方法,用于定义要爬取的 URL。我们还实现了一个 parse 方法,用于提取页面上的所有引用。我们使用 response.css 方法选择要提取的元素,并使用 yield 语句返回一个字典对象。

3. 运行 Spider

使用以下命令运行 Spider:

scrapy crawl quotes

这个示例将下载 quotes.toscrape.com 网站上的页面,并从中提取所有引用。它将引用的文本、作者和标签存储到 MongoDB 数据库中。

六、总结

Scrapy 是一个功能强大的 Python 库和框架,用于从网站上提取数据。它为自从网站爬取数据而设计,也可以用于数据挖掘和信息处理。Scrapy 的目标是提供更简单、更快速、更强大的方式来从网站上提取数据。Scrapy 框架由 Spiders、Items、Item Pipeline、Downloader 和 Middleware 等组件构成,并具有可定制和可扩展性强的特性。使用 Scrapy 框架可以大大减少开发人员在网络爬虫开发中的时间和精力,是一个非常优秀的爬虫框架。

http://www.lryc.cn/news/116887.html

相关文章:

  • winform中嵌入cefsharp, 并使用selenium控制
  • 【leetcode】349. 两个数组的交集(easy)
  • leetcode 2616. 最小化数对的最大差值
  • npm install 安装慢的问题处理
  • 【JAVA】七大排序算法(图解)
  • UNIX 系统概要
  • Unity 基础函数
  • 【学习】若依源码(前后端分离版)之 “ 上传图片功能实现”
  • vue3 excel 导出功能
  • python 相关框架事务开启方式
  • vue使用ElementUI
  • Python做一个绘图系统3:从文本文件导入数据并绘图
  • flutter开发实战-获取Widget的大小及位置
  • 软件测试工程师面试如何描述自动化测试是怎么实现的?
  • Qt5兼容使用之前Qt4接口 intersect接口
  • 【云原生】Kubernetes节点亲和性分配 Pod
  • 【Essential C++课后练习】纯代码(更新中)
  • C#仿热血江湖GClass
  • [SQL智慧航行者] - 用户购买商品推荐
  • Idea配置Scala开发环境
  • LT8711UXD 是一款高性能双通道 Type-C/DP1.4 至 HDMI2.0 转换器
  • Android APK体积优化(瘦身)
  • python技术栈 之 单元测试中mock的使用
  • python 提取冒号和逗号内的字符串
  • CentOS安装Postgresql
  • 云原生可观测框架 OpenTelemetry 基础知识(架构/分布式追踪/指标/日志/采样/收集器)...
  • 多用户跨境电商商品库系统快速搭建(全开源)
  • DataGrip 配置 HiveServer2 远程连接访问
  • 异常的使用
  • 软件安全测试包含哪些内容和方法?安全测试报告的必要性