当前位置: 首页 > news >正文

【图像去噪】基于原始对偶算法优化的TV-L1模型进行图像去噪研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及文章讲解


💥1 概述

参考文献:

基于对偶算法优化的TV-L1模型是一种常用的图像去噪方法,它结合了全变差(Total Variation, TV)正则化和L1范数正则化,能够有效地去除图像中的噪声并保持图像的细节信息。

TV-L1模型的基本形式为:

minimize ||u-f||^2 + λ * TV(u)

其中,u表示待去噪的图像,f表示带噪图像,TV(u)表示全变差正则化项,λ表示正则化参数,控制去噪和平滑程度。

对偶算法是一种常用的优化方法,用于求解TV-L1模型。该算法的基本思想是将TV-L1模型转化为对偶问题,并通过迭代求解对偶问题的一系列子问题,逐步优化图像的去噪结果。

对偶算法优化的TV-L1模型的步骤如下:

1. 初始化:
   随机初始化待去噪图像u。

2. 计算梯度:
   计算待去噪图像u的梯度。

3. 更新对偶变量:
   根据梯度和当前的对偶变量值,更新对偶变量。

4. 项目约束:
   对更新的对偶变量进行约束处理,确保在一定范围内。

5. 更新原始变量:
   根据更新的对偶变量和带噪图像,更新原始变量。

6. 迭代迭代收敛:
   重复执行步骤3至步骤5,直至满足迭代收敛条件。

7. 输出结果:
   输出优化后的图像u作为最终的去噪结果。

通过对偶算法优化的TV-L1模型,可以在保持图像细节的同时,有效地去除图像中的噪声。然而,该方法在迭代过程中可能需要较长的时间来达到较好的去噪效果,而且对正则化参数的选择也较为敏感。因此,在实际应用中需要根据具体情况进行调整和优化,以获得最佳的图像去噪结果。

详细讲解见第4部分。

📚2 运行结果

 

 部分代码:

% projection
    % compute gradient in ux, uy
    %[ux, uy]=imgradientxy(u, 'IntermediateDifference');
    ux=u(:, [2:width, width]) - u;
    uy=u([2:height, height], :) - u;
    p=p + sigma*cat(3, ux, uy);
    % project
    normep=max(1, sqrt(p(:, :, 1).^2 + p(:, :, 2).^2)); 
    p(:, :, 1)=p(:, :, 1)./normep;
    p(:, :, 2)=p(:, :, 2)./normep;

    % shrinkage
    % compute divergence in div
    div=[p([1:height-1], :, 2); zeros(1, width)] - [zeros(1, width); p([1:height-1], :, 2)];
    div=[p(:, [1:width-1], 1)  zeros(height, 1)] - [zeros(height, 1)  p(:, [1:width-1], 1)] + div;

    %% TV-L2 model
    %unew=(u + tau*div + lt*nim)/(1+tau);

    % TV-L1 model
    v=u + tau*div;
    unew=(v-lt).*(v-nim>lt) + (v+lt).*(v-nim<-lt) + nim.*(abs(v-nim)<=lt);
    %if(v-nim>lt); unew=v-lt; elseif(v-nim<-lt) unew=v+lt; else unew=nim; end

    % extragradient step
    u=unew + theta*(unew-u);

    %% energy being minimized
    % ux=u(:, [2:width, width]) - u;
    % uy=u([2:height, height], :) - u;
    % E=sum(sqrt(ux(:).^2 + uy(:).^2)) + lambda*sum(abs(u(:) - nim(:)));
    % fprintf('Iteration %d: energy %g\n', k, E);

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]徐静,刘俊皓.一种改进的原始对偶法求解TV-L1图像去噪模型[J].应用数学学报,2020,43(04):684-699.

[2]娄伟,钟彩,张观山.基于L1-L2范数的正则项去噪模型的PCB图像去噪算法研究[J].光电子·激光,2020,31(02):168-174.DOI:10.16136/j.joel.2020.02.0310.

[3]娄伟,钟彩,张观山.基于L1-L2范数的正则项去噪模型的PCB图像去噪算法研究[J].光电子·激光,2020,31(02):168-174.DOI:10.16136/j.joel.2020.02.0310.

🌈4 Matlab代码及文章讲解

http://www.lryc.cn/news/108437.html

相关文章:

  • RISC-V基础之函数调用(五)函数递归调用及函数参数数量溢出(超出现有寄存器个数)约定(包含实例)
  • 力扣:48. 旋转图像(Python3)
  • HarmonyOS应用开发者基础与高级认证题库——中级篇
  • Python中实现多个列表、字典、元组、集合的连接
  • 1005 继续(3n+1)猜想
  • 基于图片、无人机、摄像头拍摄进行智能检测功能
  • Boost开发指南-4.2ignore_unused
  • 【Mybatis】XML映射文件
  • 11.2【MyBatis】主配置文件
  • linuxARM裸机学习笔记(2)----汇编LED灯实验
  • 用C语言实现插入排序算法
  • 2023 电赛E题--可能会出现的问题以及解决方法
  • Demystifying Prompts in Language Models via Perplexity Estimation
  • WEB集群——http、tomcat
  • Socks5代理:网络安全与爬虫之利器
  • 如何兼容低版本浏览器
  • 【雕爷学编程】MicroPython动手做(39)——机器视觉之图像基础2
  • gitlab搭建
  • JMeter 的使用
  • Java语言 Iterator 如何装换成 List
  • 国产GOWIN实现低成本实现CSI MIPI转换DVP
  • Typescript第六章 类型进阶(类型之间的关系,全面性检查,对象类型进阶,函数类型进阶,条件类型等)
  • kernel32.dll如何修复,快速解决kernel32.dll缺失的方法
  • 初始化前端项目配置 eslint、prettier、husky 等等
  • 嵌入式存储器为AI的实现提供了实现架构
  • iOS开发-格式化时间显示刚刚几分钟前几小时前等
  • ffmpeg视频音频命令
  • Jenkins工具系列 —— Jenkins 安装并启动
  • 使用中间人攻击的arp欺骗教程
  • 设计模式、Java8新特性实战 - List<T> 抽象统计组件