当前位置: 首页 > news >正文

215. 数组中的第K个最大元素

题目链接:力扣

解题思路:

方法一:基于快速排序

因为题目中只需要找到第k大的元素,而快速排序中,每一趟排序都可以确定一个最终元素的位置。

当使用快速排序对数组进行降序排序时,那么如果有一趟排序过程中,确定元素的最终位置为k-1(索引从0开始),那么,该元素就是第k大的元素

具体思想下:

  1. 利用快排,对数组num[left,...,right]进行降序排序,在一趟排序过程中,可以确定一个元素的最终位置p,将数组划分为三部分,num[left,...,p-1],nums[p],nums[p+1,right],并且满足
    1. num[left,...,p-1] >= nums[p]
    2. num[p+1,right] <=nums[p]
    3. 即p位置以前的元素是数组中比p位置元素大的元素(此时p位置以前的元素不一定有序,但是肯定都大于等于p位置的元素),而num[p]是第p+1大的元素
  2. 因为需要找到的是第k大的元素:
    1. 如果k < p,那么第k大的元素肯定在num[left,...,p-1]内,这个时候只需要对右半部分区间进行快排
    2. 如果k > p,那么第k大的元素肯定在nums[p+1,right]区间内,这个时候只需要对左半部分区间进行快排
    3. 如果 p= k-1,那么nums[p]就是第k大的元素
  3. 注意这种方式并不要求最终数组中的元素有序,每次只会对左半部分或者右半部分进行快排,减少了一般的快排调用

AC代码:

class Solution {public static int findKthLargest(int[] nums, int k) {return quickSortFindK(nums, 0, nums.length - 1, k);}public static int quickSortFindK(int[] nums, int left, int right, int k) {//选取枢轴元素int pivot = nums[left];int low = left;int high = right;while (low < high) {while (low < high && nums[high] <= pivot)high--;nums[low] = nums[high];while (low < high && nums[low] >= pivot)low++;nums[high] = nums[low];}//low(或者right)就是这趟排序中枢轴元素的最终位置nums[low] = pivot;if (low == k - 1) {return pivot;} else if (low > k - 1) {return quickSortFindK(nums, left, low - 1, k);} else {return quickSortFindK(nums, low + 1, right, k);}}
}

 

快速排序的最好时间复杂度是O(nlogn),最坏时间复杂度为O(n^2),平均时间复杂度为O(nlogn)

快速排序在元素有序的情况下效率是最低。

不过可以通过在某些情况下,快速排序可以达到期望为线性的时间复杂度,即O(n),也就是在每次排序前随机的交换两个元素(个人理解可能是为了让元素变乱,不那么有序,越乱越快,算法导论中在9.2 期望为线性的选择算法进行了证明,还没有学习,先在此记录下),它的时间代价的期望是 O(n)

具体代码实现,就是在排序前,加上下面的代码

//随机生成一个位置,该位置的范围为[left,right]
//然后将该位置的元素与最后一个元素进行交换,让数组变得不那么有序,
//放置出现有序的情况下快排的时间复杂度退化为o(n^2)
int randomIndex = random.nextInt(right - left + 1) + left;
int tem = nums[randomIndex];
nums[randomIndex] = nums[right];
nums[right] = tem;

AC代码:

class Solution {static Random random = new Random();public static int findKthLargest(int[] nums, int k) {return quickSortFindK(nums, 0, nums.length - 1, k);}public static int quickSortFindK(int[] nums, int left, int right, int k) {int randomIndex = random.nextInt(right - left + 1) + left;int tem = nums[randomIndex];nums[randomIndex] = nums[right];nums[right] = tem;int pivot = nums[left];int low = left;int high = right;while (low < high) {while (low < high && nums[high] <= pivot)high--;nums[low] = nums[high];while (low < high && nums[low] >= pivot)low++;nums[high] = nums[low];}nums[low] = pivot;if (low == k - 1) {return pivot;} else if (low > k - 1) {return quickSortFindK(nums, left, low - 1, k);} else {return quickSortFindK(nums, low + 1, right, k);}}
}

 时间上确实有了一些提升

解法二:堆排序。

建立小根堆,最后让小根堆里的元素个数保持在k个,那么此时栈顶的元素就是k个元素中最小的,即第k大的元素

可以通过优先级队列来模拟小根堆

AC代码

class Solution {public int findKthLargest(int[] nums, int k) {PriorityQueue<Integer> queue = new PriorityQueue<>();for (int num : nums) {//已经有k个元素了,当前元素比堆顶元素还小,不可能是第k大的元素,跳过if (queue.size()==k&&queue.peek()>=num){continue;}queue.offer(num);}while (queue.size()>k){queue.poll();}return queue.peek();}
}

http://www.lryc.cn/news/106533.html

相关文章:

  • NLP From Scratch: 生成名称与字符级RNN
  • Spring MVC程序开发
  • 医疗知识图谱问答——文本分类解析
  • JS关于多张图片上传显示报错不影响后面图片上传方法
  • MySQL踩坑之sql_mode的用法
  • 消息队列总结(4)- RabbitMQ Kafka RocketMQ高性能方案
  • websocket服务端大报文发送连接自动断开分析
  • 想写几个上位机,是选择学c#还是 c++ qt呢?
  • JavaScript 简单实现观察者模式和发布-订阅模式
  • java集成短信服务 测试版 qq邮箱简单思路
  • #P0994. [NOIP2004普及组] 花生采摘
  • Elasticsearch和Kibana的安装及验证
  • 细讲TCP三次握手四次挥手(一)
  • 【linux-zabbix】zabbix-agent启动报错:Daemon never wrote its PID file. Failing.
  • 【微信小程序】初始化 wxCharts,调用updateData动态更新数据
  • 【C语言初阶(19)】实用的 VS 调试技巧
  • 虚拟机之间配置免密登录
  • 【contenteditable属性将元素改为可编辑状态】
  • Android 第三方库CalendarView
  • 钉钉群消息推送
  • css clip-path 属性介绍
  • Python之pyinstaller打包exe填坑总结
  • Form Generator 表单JSON数据储存以及JSON回显表单
  • Python - OpenCV识别条形码、二维码(已封装,拿来即用)
  • Python如何快速实现爬取网页?
  • 怎么才能远程控制笔记本电脑?
  • 【3】C++实现多进程、多线程
  • Linux用户权限信息、chmod以及chown命令
  • 利用vscode--sftp,将本地项目/文件上传到远程服务器中详细教程
  • java List和数组相互转换的方法总结