当前位置: 首页 > news >正文

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1
2
3

4
5
6
7
8
9

基本介绍

MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
1.MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

POA-CNN-BiLSTM鹈鹕算法是一种用于回归预测的神经网络模型,它结合了卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)和多输入单输出的架构。
在这个模型中,卷积神经网络用于从输入数据中提取特征,双向长短期记忆神经网络用于处理序列数据,并且多输入单输出的架构可以同时处理多个输入变量并输出一个预测结果。这个模型的名称中的“鹈鹕”指的是一种候鸟,可能是因为这个模型可以处理多个输入变量,就像候鸟可以飞行和浮游。
优化这个模型的方法可以包括以下几个方面:
数据预处理:对输入数据进行预处理可以提高模型的性能。可以进行数据归一化、标准化,或者进行特征选择和降维等操作,以减少输入数据的维度和噪声,从而更好地提取特征。
超参数调优:选择合适的超参数可以提高模型的性能。
正则化:使用正则化技术可以减少模型的过拟合。可以使用L1、L2正则化、dropout等技术来避免模型过度拟合训练数据。
综上所述,优化POA-CNN-BiLSTM鹈鹕算法可以通过多种方法进行,通过这些方法的结合可以提高模型的性能和泛化能力,从而更好地预测回归结果。

6

基于卷积神经网络和双向长短期记忆(BiLSTM)神经网络的深度学习网络结构。采用特征融合的方法,通过卷积网络提取出浅层特征与深层特征并进行联接,对特征通过卷积进行融合,将获得的矢量信息输入BiLSTM单元。

程序设计

  • 完整源码和数据获取方式1:私信博主,同等价值程序兑换;
  • 完整源码和数据下载方式2(资源处直接下载):MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测
  • 完整程序和数据下载方式3(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.lryc.cn/news/103517.html

相关文章:

  • opencv顺时针,逆时针旋转视频并保存视频
  • 【LeetCode】最小路径和
  • zygote forkSystemServer及systemServer启动
  • 享元模式-提供统一实现对象的复用
  • Jenkins工具系列 —— 在Ubuntu 18.04上安装各种版本OpenJDK
  • vue基础-虚拟dom
  • C#时间轴曲线图形编辑器开发2-核心功能实现
  • 【Git】初始化仓库配置与本地仓库提交流程
  • 学习day53
  • 【最短路算法】SPFA
  • 牛客网Verilog刷题——VL48
  • Unity UGUI的Shadow(阴影)组件的介绍及使用
  • Kubernetes系列
  • 同步锁: synchronized
  • 【微服务】springboot 多模块打包使用详解
  • 嵌入式工程师面试经常遇到的30个经典问题
  • ER系列路由器多网段划分设置指南
  • 3 PostGIS基础查询
  • Shell错误:/bin/bash^M: bad interpreter: No such file or directory
  • Golang之路---01 Golang的安装与配置
  • Anolis OS 8.8服务器采用docker容器方式搭建gerrit3.8.1服务
  • PyTorch 中的多 GPU 训练和梯度累积作为替代方案
  • Appium+python自动化(三十五)- 命令启动appium之 appium服务命令行参数(超详解)
  • vmware的window中安装GNS3
  • FPGA XDMA 中断模式实现 PCIE3.0 AD7606采集 提供2套工程源码和QT上位机源码
  • 某某大学某学院后台Phar反序列化GetShell
  • 【ChatGPT辅助学Rust | 基础系列 | 基础语法】变量,数据类型,运算符,控制流
  • 使用云服务器和Frp(快速反向代理)框架快速部署实现内网穿透
  • Mac 上使用 Tesseract OCR 识别图片文本
  • 《MapboxGL 基础知识点》- 放大/缩小/定位/级别