2023-02-16:干活小计
数学公式表示学习:
大约耗时:2 hours
在做了一些工作后重读论文:MathBERT: A Pre-Trained Model for Mathematical Formula Understanding
这是本篇论文最重要的idea:Current pre-trained models neglect the structural features and the semantic correspondence between formula and its context.(其中很fancy的一点是注重每个数学公式的strctural features,即关注数学公式的结构)
用三个下游任务验证,并且效果很好:
mathematical information retrieval
formula topic classifification
formula headline generation
三个预训练任务:
Masked Language Modeling (MLM) :text representations
模仿BERT的MLM,其中三个字段即公式latex、context、OPT的信息可以互补。
Context Correspondence Prediction (CCP):latentrelationshipbetweenformula and context
模仿BERT的NSP,二分类任务。
Masked Substructure Prediction (MSP):semantic-levelstructureofformula
预训练任务数据集:
We build a large dataset containing more than 8.7 million formula-context pairs which are extracted from scientifific articles published on arXiv.org1 and train MathBERT on it.
Arxiv bulk data available from Amazon S32 is the complete set of arxiv documents which contains source TEX fifiles and processed PDF fifiles. “\begin{equation} . . .\end{equation}” is used as the matching pattern to extract single-line display formulas from LATEX source in these TEX files.
toolkit LATEX tokenizer in im2markup to tokenize separately formulasOPT translator in TangentS4 to convert LATEX codes into OPTs
模型的backbone:
An enhanced multi-layer bidirectional Transformer [Vaswani et al., 2017] is built as the backbone of MathBERT, which is modifified from vanilla BERT.
MathBERT的输入:we concatenate the formula LATEX tokens, context and operators together as the input of MathBERT.
attention 机制的细节:the attention mechanism in Transformer is modifified based on the structure of OPT to enhance its ability of capturing structural information
具体的细节看原文,这里上个图

architecture:

思政知识图谱:
大约耗时3~5hours
我们要理清当前的任务:
1.爬取彰显政治精神的case:爬取的网站?学习爬虫?
2.对case的分类:学学学
3.对case的挂载:学学学
学习爬虫:
将一段文本打上NER的标签的方法:人工;百度打标;(jieba、hanNLP准确率不太行)
MRE:
今天开了分享会,没时间做这个了,只能路上想想idea
自学:
回家看看花书,芜湖