Bernstein-Vazirani算法
B-V算法
(1) 问题描述
给定布尔函数f:{0,1}n→0,1f:{\left\{ {0,1} \right\}^n} \to{0,1}f:{0,1}n→0,1, 函数fff的值是由输入比特串xxx和确定的比特串sss做模2意义下的内积:f(x)=x⋅s(mod2),f\left( x \right) = x \cdot s\left( {\bmod 2} \right),f(x)=x⋅s(mod2),其中x⋅s=∑i(xi⊕si)x \cdot s = \sum\limits_i {\left( {{x_i} \oplus {s_i}} \right)} x⋅s=i∑(xi⊕si)
前提:可以调用访问函数fff的黑盒
问题:计算出比特串sss
经典意义下:
依次输入比特串xxx:
00...0000...0100...10...01...0010...00\begin{array}{l} 00...00\\ 00...01\\ 00...10\\ ...\\ 01...00\\ 10...00 \end{array}00...0000...0100...10...01...0010...00
对于第iii次输入:
000100...00→x⋅s(mod2)=si000100...00 \to x \cdot s\left( {\bmod 2} \right) = {s_i}000100...00→x⋅s(mod2)=si
重复该流程nnn次,即可确定比特串sss,上述方法的查询复杂度为O(n)O\left( n \right)O(n)
(2) 量子算法核心思路:
基础知识:H⊗n∣s⟩=12n2∑x(−1)s⋅x∣x⟩H^{\otimes n}|s\rangle=\frac{1}{2^{\frac{n}{2}}} \sum_{x}(-1)^{s \cdot x}|x\rangleH⊗n∣s⟩=22n1∑x(−1)s⋅x∣x⟩
Step1:制备初始量子比特∣Φ0⟩=∣0⟩⊗n\left| {{\Phi _0}} \right\rangle ={\left| 0 \right\rangle ^{ \otimes n}}∣Φ0⟩=∣0⟩⊗n
Step2:作用H⊗n{H^{ \otimes n}}H⊗n,得到量子态∣Φ0⟩=12n2∑x∣x⟩\left| {{\Phi _0}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {|x\rangle } ∣Φ0⟩=22n1x∑∣x⟩
Step3:作用量子黑盒Of{O_f}Of,Of:∣x⟩→(−1)x⋅s∣x⟩{O_f}:\left| x \right\rangle \to {\left( { - 1} \right)^{x \cdot s}}\left| x \right\rangleOf:∣x⟩→(−1)x⋅s∣x⟩,此时系统状态为∣Φ1⟩=12n2∑x(−1)s⋅x∣x⟩\left| {{\Phi _1}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {{{\left( { - 1} \right)}^{s \cdot x}}|x\rangle }∣Φ1⟩=22n1x∑(−1)s⋅x∣x⟩
Step4:作用H⊗n{H^{ \otimes n}}H⊗n,系统状态变为∣s⟩|s\rangle∣s⟩
此时测量量子系统即可得到比特串sss,该算法的查询复杂为O(1)O(1)O(1)
备注:上述量子黑盒OfO_fOf的实现方法与Deutsh算法相似,具体方法如下
(1) 制备量子态∣Ψ0⟩=∣0⟩n∣1⟩\left| {{\Psi _0}} \right\rangle = {\left| 0 \right\rangle ^n}\left| 1 \right\rangle∣Ψ0⟩=∣0⟩n∣1⟩
(2) 作用H⊗n{H^{ \otimes n}}H⊗n,量子系统变为∣Ψ1⟩=12n2∑x∣x⟩∣−⟩\left| {{\Psi _1}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {|x\rangle } \left| - \right\rangle∣Ψ1⟩=22n1x∑∣x⟩∣−⟩
(3) 作用Uf:∣x⟩∣y⟩→∣x⟩∣y⊕f(x)⟩U_f:\left|x\right\rangle\left|y\right\rangle \to\left|x\right\rangle\left|y\oplus f\left( x \right)\right\rangleUf:∣x⟩∣y⟩→∣x⟩∣y⊕f(x)⟩,量子系统演变为∣Ψ2⟩=12n2∑x∣x⟩1212(∣0⊕f(x)⟩−∣1⊕f(x)⟩)\left| {{\Psi _2}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {|x\rangle } \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| {0 \oplus f\left( x \right)} \right\rangle - \left| {1 \oplus f\left( x \right)} \right\rangle } \right)∣Ψ2⟩=22n1x∑∣x⟩2211(∣0⊕f(x)⟩−∣1⊕f(x)⟩)
当f(x)=0{f\left( x \right)}=0f(x)=0时,∣x⟩1212(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩1212(∣0⟩−∣1⟩)=∣x⟩∣−⟩\left|x\right\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| {0 \oplus f\left( x \right)} \right\rangle - \left| {1 \oplus f\left( x \right)} \right\rangle } \right) = |x\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| 0 \right\rangle - \left| 1 \right\rangle } \right) = |x\rangle \left| - \right\rangle∣x⟩2211(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩2211(∣0⟩−∣1⟩)=∣x⟩∣−⟩
当f(x)=1{f\left( x \right)}=1f(x)=1时,∣x⟩1212(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩1212(∣0⟩−∣1⟩)=−∣x⟩∣−⟩\left|x\right\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| {0 \oplus f\left( x \right)} \right\rangle - \left| {1 \oplus f\left( x \right)} \right\rangle } \right) = |x\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| 0 \right\rangle - \left| 1 \right\rangle } \right) = -|x\rangle \left| - \right\rangle∣x⟩2211(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩2211(∣0⟩−∣1⟩)=−∣x⟩∣−⟩
不难发现UfU_fUf的作用为:∣x⟩∣−⟩→(−1)f(x)∣x⟩∣−⟩=(−1)s⋅x∣x⟩∣−⟩|x\rangle \left| - \right\rangle \to {\left( { - 1} \right)^{f\left( x \right)}}|x\rangle \left| - \right\rangle={\left( { - 1} \right)^{s \cdot x}}|x\rangle \left| - \right\rangle∣x⟩∣−⟩→(−1)f(x)∣x⟩∣−⟩=(−1)s⋅x∣x⟩∣−⟩
舍弃掉最后一个量子比特(辅助比特)∣−⟩\left| - \right\rangle∣−⟩,即实现了Step3中的黑盒OfO_fOf
参考资料
[1] Bernstein-Vazirani Algorithm 学习笔记
[2] 量子计算【算法篇】第7章 Deutsch-Josza算法及实现
(3) 由 Fourier Sampling 到 Deutsch-Jozsa Algorithm & Bernstein-Vazirani Algorithm