当前位置: 首页 > news >正文

AI课堂教学质量评估系统算法 yolov7

AI课堂教学质量评估系统通过yolov7网络模型框架利用摄像头和人脸识别技术,AI课堂教学质量评估系统实时监测学生的上课表情和课堂行为。同时,还结合语音识别技术和听课专注度分析算法,对学生的听课专注度进行评估,生成教学质量报告,并提供针对性的改进建议,帮助教师发现问题并进行针对性的改进,提升教学效果。相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。

此外,研究者发现使用动态标签分配技术时,具有多个输出层的模型在训练时会产生新的问题:「如何为不同分支的输出分配动态目标?」针对这个问题,研究者提出了一种新的标签分配方法,称为从粗粒度到细粒度(coarse-to-fine)的引导式标签分配。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。对于模型重参数化,该研究使用梯度传播路径的概念分析了适用于不同网络层的模型重参数化策略,并提出了有计划的重参数化模型。

YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。

 Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

http://www.lryc.cn/news/97841.html

相关文章:

  • eventBus使用遇到的坑
  • ChatGPT应用|科大讯飞星火杯认知大模型场景创新赛开始报名了!
  • DM8 DSC备份还原
  • 【Docker--harbor私有仓库部署与管理】
  • 基于量子同态加密的安全多方凸包协议
  • MySQL案例——多表查询以及嵌套查询
  • AI 视频清晰化CodeFormer-Deepfacelab
  • TCP协议如何实现可靠传输
  • 万恶的Eclipse的使用
  • 文件上传--题目
  • 小程序创建
  • stable diffusion如何确保每张图的面部一致?
  • 保存Windows锁屏壁纸
  • 面向对象编程:深入理解内部类与抽象类的使用
  • linux安装oracle
  • 切面 基于Aspect注解自动切面, 省下注解判断逻辑 handler
  • golang,gin框架的请求参数(一)--推荐
  • ardupilot 遥控的输入控制模式
  • Unity UGUI的StandaloneInputModule (标准输入模块)组件的介绍及使用
  • 惠普HP Color Laser 150a开机红色感叹号闪烁不打印故障解决方法
  • CVE-2023-1454注入分析复现
  • MFC使用png做背景图片
  • Java开发的基石:JDK
  • 使用langchain与你自己的数据对话(三):检索(Retrieval)
  • DEVICENET转ETHERNET/IP网关devicenet协议
  • GPT一键化身「AI助理」——自定义指令功能
  • 深入理解Promise
  • 【2023 年第二届钉钉杯大学生大数据挑战赛】 初赛 B:美国纽约公共自行车使用量预测分析 问题三时间序列预测Python代码分析
  • redis-cluster 创建及监控
  • vue+ivew model框 select校验遇到的问题