当前位置: 首页 > news >正文

第七十天学习记录:高等数学:微分(宋浩板书)

微分的定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本微分公式与法则

在这里插入图片描述
在这里插入图片描述

复合函数的微分

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

微分的几何意义

在这里插入图片描述

微分在近似计算中应用

在这里插入图片描述
在这里插入图片描述
sin(x+y) = sin(x)cos(y) + cos(x)sin(y)可以用三角形的几何图形来进行证明。

假设在一个单位圆上,点A(x,y)的坐标为(x,y),点B(x’, y’)的坐标为(x’, y’)。则以两点为直角的直角三角形的斜边长为1,且所在的角为夹角x+y。

接下来,通过计算三角形中的各条边可以得到:

sin(x+y) = y’+y
cos(x+y) = x’+x

将cos x = x, sin x = y, cos y = x’ 和 sin y = y’ 代入上述公式得到:

sin(x+y) = sin(x)cos(y) + cos(x)sin(y)

至此,公式的正确性得到证明。

同时,我们还可以在单位圆上仿照上面的方法证明和差化积公式的正确性,这同样也是基于三角形的几何形式得到的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

微分中值定理 罗尔定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
微积分中解决实际问题的过程一般包括两个步骤:微分和积分。

微分就是求导数,其本质是研究函数在某个点附近的局部变化,是一种用来描述函数变化情况的方法。而导数的定义是函数在某点处的变化速率,可以通过极限的方式准确地求解,不需要使用任何近似值。因此,导数的求解不需要近似值。

而微分的目的是为了研究函数在某个区间内的整体变化情况,例如函数的极值、拐点等。微分中经常需要计算函数的斜率,也就是导数。在一些情况下,我们无法直接求解导数,需要利用差商进行近似计算。这里的差商是指函数在两个点处的函数值之差与这两个点之间的距离之比,因此差商实际上是一种近似的导数计算方法。因此,微分中的近似计算需要使用差商这种近似的方法来实现。

另外,导数能够准确地描述函数在某点附近的局部变化,而微分则研究函数在整个区间内的整体变化情况。因此,在求解导数时,只需要关注函数在某点的变化情况,精度较高;而在微分过程中,则需要考虑整个区间内的变化情况,需要使用近似方法来近似计算。

柯西中值定理

在这里插入图片描述
在这里插入图片描述

洛必达法则★★★★★

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

泰勒公式

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

单调性

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

极值与其求法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

渐近线

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

函数图形的绘制

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
为什么偶函数求导就是奇函数?
设 f(x) 是一个偶函数,即 f(x) = f(-x)。则有:

f’(x) = lim(h→0)[f(x+h) - f(x)]/h

将 h 替换为 -h,得到:

f’(-x) = lim(-h→0)[f(-x+h) - f(-x)]/h

因为 f(x) 是偶函数,所以 f(-x+h) = f(-(x-h)) = f(x-h),且 f(-x) = f(x),可以得到:

f’(-x) = lim(h→0)[-f(x-h) + f(x)]/(-h)

因为减去一个数可以看作加上它的相反数,即 -f(x-h) = f(-(x-h)) = f(x+h),可以得到:

f’(-x) = lim(h→0)[f(x+h) - f(x)]/h = f’(x)

所以 f(x) 的导函数 f’(x) 是偶函数。

因此,若偶函数 f(x) 求导后得到的导函数为 f’(x),则 f’(x) 是奇函数。
在这里插入图片描述
在这里插入图片描述
这是二次方程标准形式,可以使用求根公式(也称为“二次公式”)求解。

二次公式:

对于二次方程 ax^2 + bx + c = 0,解的公式为:

x = (-b ± √(b^2 - 4ac)) / 2a

即,解为两个根:

x1 = (-b + √(b^2 - 4ac)) / 2a

x2 = (-b - √(b^2 - 4ac)) / 2a

其中±表示两种可能的符号(+或-),√表示算术平方根。

根的性质:

  1. 当 b^2 - 4ac > 0 时,方程有两个不相等的实数根。

  2. 当 b^2 - 4ac = 0 时,方程有两个相等的实数根。

  3. 当 b^2 - 4ac < 0 时,方程没有实数根,但有两个共轭复根。

注意:

求根公式对于系数 a 不为 0 的二次方程适用,对于 a = 0 的情况,此时方程不再是二次方程,而是一次方程。

另外,在实际计算过程中,要注意避免出现计算误差或溢出等情况,需要采取适当的数值稳定性措施。
在这里插入图片描述

曲率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/92877.html

相关文章:

  • Jmeter
  • Flutter 学习 之 时间转换工具类
  • docker consul
  • 全志V3S嵌入式驱动开发(开发环境再升级)
  • ChatGPT:人工智能助手的新时代
  • 【面试】二、Java补充知识
  • LISTENER、TNSNAMES和SQLNET配置文件
  • 【Leetcode -225.用队列实现栈 -232.用栈实现队列】
  • 悟道3.0全面开源!LeCun VS Max 智源大会最新演讲
  • 2023蓝桥杯大学A组C++决赛游记+个人题解
  • wkhtmltopdf踩坑记录
  • 贪心算法part2 | ● 122.买卖股票的最佳时机II ● 55. 跳跃游戏 ● 45.跳跃游戏II
  • [C++]异常笔记
  • 浅谈一级机电管道设计中的压力与介质温度
  • Docker网络模型(八)使用 macvlan 网络
  • 控制视图内容的位置
  • 【分布式系统与一致性协议】
  • 音视频领域的未来发展方向展望
  • 时间同步/集群时间同步/在线/离线
  • 基于BP神经网络对MNIST数据集检测识别(numpy版本)
  • HTML5-创建HTML文档
  • Vue中Axios的封装和API接口的管理
  • MLIR面试题
  • ***杨辉三角_yyds_LeetCode_python***
  • Mac使用DBeaver连接达梦数据库
  • spring.expression 随笔0 概述
  • 从Cookie到Session: Servlet API中的会话管理详解
  • docker数据管理与网络通信
  • 怎么查询电脑的登录记录及密码更改情况?
  • 《三》TypeScript 中函数的类型