当前位置: 首页 > news >正文

尝试在UNet的不同位置添加SE模块

目录

(1)se-unet01(在卷积后,下采样前,添加SE模块)

(2)se-unet02(在卷积后,上采样前,添加SE模块)

(3)se-unet03(在每两个卷积之后,加上SE模块)

(4)se-unet04(只在最后的输出卷积后,添加SE模块)


数据集:refuge视盘数据集

训练轮次:50

评价指标:dice coefficient、mean IOU

Architecture
dice coefficientmean IOU
unet0.98961.1
se-unet010.98963.3
se-unet020.98860.5
se-unet030.98867.3
se-unet040.98967.2

(1)在卷积后,下采样前,添加SE模块

模型改动代码

from typing import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F'''-------------一、SE模块-----------------------------'''
#全局平均池化+1*1卷积核+ReLu+1*1卷积核+Sigmoid
class SE_Block(nn.Module):def __init__(self, inchannel, ratio=16):super(SE_Block, self).__init__()# 全局平均池化(Fsq操作)self.gap = nn.AdaptiveAvgPool2d((1, 1))# 两个全连接层(Fex操作)self.fc = nn.Sequential(nn.Linear(inchannel, inchannel // ratio, bias=False),  # 从 c -> c/rnn.ReLU(),nn.Linear(inchannel // ratio, inchannel, bias=False),  # 从 c/r -> cnn.Sigmoid())def forward(self, x):# 读取批数据图片数量及通道数b, c, h, w = x.size()# Fsq操作:经池化后输出b*c的矩阵y = self.gap(x).view(b, c)# Fex操作:经全连接层输出(b,c,1,1)矩阵y = self.fc(y).view(b, c, 1, 1)# Fscale操作:将得到的权重乘以原来的特征图xreturn x * y.expand_as(x)# 卷积,在uent中卷积一般成对使用
class DoubleConv(nn.Sequential):# 输入通道数, 输出通道数, mid_channels为成对卷积中第一个卷积层的输出通道数def __init__(self, in_channels, out_channels, mid_channels=None):if mid_channels is None:mid_channels = out_channelssuper(DoubleConv, self).__init__(# 3*3卷积,填充为1,卷积之后输入输出的特征图大小一致nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(mid_channels),nn.ReLU(inplace=True),nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))# 下采样
class Down(nn.Sequential):def __init__(self, in_channels, out_channels):super(Down, self).__init__(# 1.最大池化的窗口大小为2, 步长为2nn.MaxPool2d(2, stride=2),# 2.两个卷积DoubleConv(in_channels, out_channels))# 上采样
class Up(nn.Module):# bilinear是否采用双线性插值def __init__(self, in_channels, out_channels, bilinear=True):super(Up, self).__init__()if bilinear:# 使用双线性插值上采样# 上采样率为2,双线性插值模式self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)else:# 使用转置卷积上采样self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)self.conv = DoubleConv(in_channels, out_channels)def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:x1 = self.up(x1)# [N, C, H, W]# 上采样之后的特征图与要拼接的特征图,高度方向的差值diff_y = x2.size()[2] - x1.size()[2]# 上采样之后的特征图与要拼接的特征图,宽度方向的差值diff_x = x2.size()[3] - x1.size()[3]# padding_left, padding_right, padding_top, padding_bottom# 1.填充差值x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,diff_y // 2, diff_y - diff_y // 2])# 2.拼接x = torch.cat([x2, x1], dim=1)# 3.卷积,两次卷积x = self.conv(x)return x# 最后的1*1输出卷积
class OutConv(nn.Sequential):def __init__(self, in_channels, num_classes):super(OutConv, self).__init__(nn.Conv2d(in_channels, num_classes, kernel_size=1))class UNet(nn.Module):# 参数: 输入通道数, 分割任务个数, 是否使用双线插值, 网络中第一个卷积通道个数def __init__(self,in_channels: int = 1,num_classes: int = 2,bilinear: bool = True,base_c: int = 64):super(UNet, self).__init__()self.in_channels = in_channelsself.num_classes = num_classesself.bilinear = bilinearself.in_conv = DoubleConv(in_channels, base_c)# SE模块self.SE1 = SE_Block(base_c)self.SE2 = SE_Block(base_c * 2)self.SE3 = SE_Block(base_c * 4)self.SE4 = SE_Block(base_c * 8)# 下采样,参数:输入通道,输出通道self.down1 = Down(base_c, base_c * 2)self.down2 = Down(base_c * 2, base_c * 4)self.down3 = Down(base_c * 4, base_c * 8)# 如果采用双线插值上采样为 2,采用转置矩阵上采样为 1factor = 2 if bilinear else 1# 最后一个下采样,如果是双线插值则输出通道为512,否则为1024self.down4 = Down(base_c * 8, base_c * 16 // factor)self.SE5 = SE_Block(base_c * 16 // factor)# 上采样,参数:输入通道,输出通道self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear)self.up2 = Up(base_c * 8, base_c * 4 // factor, bilinear)self.up3 = Up(base_c * 4, base_c * 2 // factor, bilinear)self.up4 = Up(base_c * 2, base_c, bilinear)# 最后的1*1输出卷积self.out_conv = OutConv(base_c, num_classes)# 正向传播过程def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:# 1. 定义最开始的两个卷积层x1 = self.in_conv(x)x1 = self.SE1(x1)# 2. contracting path(收缩路径)x2 = self.down1(x1)x2 = self.SE2(x2)x3 = self.down2(x2)x3 = self.SE3(x3)x4 = self.down3(x3)x4 = self.SE4(x4)x5 = self.down4(x4)x5 = self.SE5(x5)# 3. expanding path(扩展路径)x = self.up1(x5, x4)x = self.up2(x, x3)x = self.up3(x, x2)x = self.up4(x, x1)# 4. 最后1*1输出卷积logits = self.out_conv(x)return {"out": logits}

(2)在卷积后,上采样前,添加SE模块

 模型改动代码

from typing import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F# se-unet02
'''-------------一、SE模块-----------------------------'''
#全局平均池化+1*1卷积核+ReLu+1*1卷积核+Sigmoid
class SE_Block(nn.Module):def __init__(self, inchannel, ratio=16):super(SE_Block, self).__init__()# 全局平均池化(Fsq操作)self.gap = nn.AdaptiveAvgPool2d((1, 1))# 两个全连接层(Fex操作)self.fc = nn.Sequential(nn.Linear(inchannel, inchannel // ratio, bias=False),  # 从 c -> c/rnn.ReLU(),nn.Linear(inchannel // ratio, inchannel, bias=False),  # 从 c/r -> cnn.Sigmoid())def forward(self, x):# 读取批数据图片数量及通道数b, c, h, w = x.size()# Fsq操作:经池化后输出b*c的矩阵y = self.gap(x).view(b, c)# Fex操作:经全连接层输出(b,c,1,1)矩阵y = self.fc(y).view(b, c, 1, 1)# Fscale操作:将得到的权重乘以原来的特征图xreturn x * y.expand_as(x)# 卷积,在uent中卷积一般成对使用
class DoubleConv(nn.Sequential):# 输入通道数, 输出通道数, mid_channels为成对卷积中第一个卷积层的输出通道数def __init__(self, in_channels, out_channels, mid_channels=None):if mid_channels is None:mid_channels = out_channelssuper(DoubleConv, self).__init__(# 3*3卷积,填充为1,卷积之后输入输出的特征图大小一致nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(mid_channels),nn.ReLU(inplace=True),nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))# 下采样
class Down(nn.Sequential):def __init__(self, in_channels, out_channels):super(Down, self).__init__(# 1.最大池化的窗口大小为2, 步长为2nn.MaxPool2d(2, stride=2),# 2.两个卷积DoubleConv(in_channels, out_channels))# 上采样
class Up(nn.Module):# bilinear是否采用双线性插值def __init__(self, in_channels, out_channels, bilinear=True):super(Up, self).__init__()if bilinear:# 使用双线性插值上采样# 上采样率为2,双线性插值模式self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)else:# 使用转置卷积上采样self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)self.conv = DoubleConv(in_channels, out_channels)def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:x1 = self.up(x1)# [N, C, H, W]# 上采样之后的特征图与要拼接的特征图,高度方向的差值diff_y = x2.size()[2] - x1.size()[2]# 上采样之后的特征图与要拼接的特征图,宽度方向的差值diff_x = x2.size()[3] - x1.size()[3]# padding_left, padding_right, padding_top, padding_bottom# 1.填充差值x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,diff_y // 2, diff_y - diff_y // 2])# 2.拼接x = torch.cat([x2, x1], dim=1)# 3.卷积,两次卷积x = self.conv(x)return x# 最后的1*1输出卷积
class OutConv(nn.Sequential):def __init__(self, in_channels, num_classes):super(OutConv, self).__init__(nn.Conv2d(in_channels, num_classes, kernel_size=1))class UNet(nn.Module):# 参数: 输入通道数, 分割任务个数, 是否使用双线插值, 网络中第一个卷积通道个数def __init__(self,in_channels: int = 1,num_classes: int = 2,bilinear: bool = True,base_c: int = 64):super(UNet, self).__init__()self.in_channels = in_channelsself.num_classes = num_classesself.bilinear = bilinearself.in_conv = DoubleConv(in_channels, base_c)# 下采样,参数:输入通道,输出通道self.down1 = Down(base_c, base_c * 2)self.down2 = Down(base_c * 2, base_c * 4)self.down3 = Down(base_c * 4, base_c * 8)# 如果采用双线插值上采样为 2,采用转置矩阵上采样为 1factor = 2 if bilinear else 1# 最后一个下采样,如果是双线插值则输出通道为512,否则为1024self.down4 = Down(base_c * 8, base_c * 16 // factor)# 上采样,参数:输入通道,输出通道self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear)self.up2 = Up(base_c * 8, base_c * 4 // factor, bilinear)self.up3 = Up(base_c * 4, base_c * 2 // factor, bilinear)self.up4 = Up(base_c * 2, base_c, bilinear)# 最后的1*1输出卷积self.out_conv = OutConv(base_c, num_classes)# SE模块self.SE1 = SE_Block(base_c * 16 // factor)self.SE2 = SE_Block(base_c * 8 // factor)self.SE3 = SE_Block(base_c * 4 // factor)self.SE4 = SE_Block(base_c * 2 // factor)# 正向传播过程def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:# 1. 定义最开始的两个卷积层x1 = self.in_conv(x)# 2. contracting path(收缩路径)x2 = self.down1(x1)x3 = self.down2(x2)x4 = self.down3(x3)x5 = self.down4(x4)x5 = self.SE1(x5)# 3. expanding path(扩展路径)x = self.up1(x5, x4)x = self.SE2(x)x = self.up2(x, x3)x = self.SE3(x)x = self.up3(x, x2)x = self.SE4(x)x = self.up4(x, x1)# 4. 最后1*1输出卷积logits = self.out_conv(x)return {"out": logits}

(3)在每两个卷积之后,加上SE模块

 

模型改动代码

from typing import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F# se-unet03
'''-------------一、SE模块-----------------------------'''
#全局平均池化+1*1卷积核+ReLu+1*1卷积核+Sigmoid
class SE_Block(nn.Module):def __init__(self, inchannel, ratio=16):super(SE_Block, self).__init__()# 全局平均池化(Fsq操作)self.gap = nn.AdaptiveAvgPool2d((1, 1))# 两个全连接层(Fex操作)self.fc = nn.Sequential(nn.Linear(inchannel, inchannel // ratio, bias=False),  # 从 c -> c/rnn.ReLU(),nn.Linear(inchannel // ratio, inchannel, bias=False),  # 从 c/r -> cnn.Sigmoid())def forward(self, x):# 读取批数据图片数量及通道数b, c, h, w = x.size()# Fsq操作:经池化后输出b*c的矩阵y = self.gap(x).view(b, c)# Fex操作:经全连接层输出(b,c,1,1)矩阵y = self.fc(y).view(b, c, 1, 1)# Fscale操作:将得到的权重乘以原来的特征图xreturn x * y.expand_as(x)# 卷积,在uent中卷积一般成对使用
class DoubleConv(nn.Sequential):# 输入通道数, 输出通道数, mid_channels为成对卷积中第一个卷积层的输出通道数def __init__(self, in_channels, out_channels, mid_channels=None):if mid_channels is None:mid_channels = out_channelssuper(DoubleConv, self).__init__(# 3*3卷积,填充为1,卷积之后输入输出的特征图大小一致nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(mid_channels),nn.ReLU(inplace=True),nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))# 下采样
class Down(nn.Sequential):def __init__(self, in_channels, out_channels):super(Down, self).__init__(# 1.最大池化的窗口大小为2, 步长为2nn.MaxPool2d(2, stride=2),# 2.两个卷积DoubleConv(in_channels, out_channels))# 上采样
class Up(nn.Module):# bilinear是否采用双线性插值def __init__(self, in_channels, out_channels, bilinear=True):super(Up, self).__init__()if bilinear:# 使用双线性插值上采样# 上采样率为2,双线性插值模式self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)else:# 使用转置卷积上采样self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)self.conv = DoubleConv(in_channels, out_channels)def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:x1 = self.up(x1)# [N, C, H, W]# 上采样之后的特征图与要拼接的特征图,高度方向的差值diff_y = x2.size()[2] - x1.size()[2]# 上采样之后的特征图与要拼接的特征图,宽度方向的差值diff_x = x2.size()[3] - x1.size()[3]# padding_left, padding_right, padding_top, padding_bottom# 1.填充差值x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,diff_y // 2, diff_y - diff_y // 2])# 2.拼接x = torch.cat([x2, x1], dim=1)# 3.卷积,两次卷积x = self.conv(x)return x# 最后的1*1输出卷积
class OutConv(nn.Sequential):def __init__(self, in_channels, num_classes):super(OutConv, self).__init__(nn.Conv2d(in_channels, num_classes, kernel_size=1))class UNet(nn.Module):# 参数: 输入通道数, 分割任务个数, 是否使用双线插值, 网络中第一个卷积通道个数def __init__(self,in_channels: int = 1,num_classes: int = 2,bilinear: bool = True,base_c: int = 64):super(UNet, self).__init__()self.in_channels = in_channelsself.num_classes = num_classesself.bilinear = bilinearself.in_conv = DoubleConv(in_channels, base_c)# 下采样,参数:输入通道,输出通道self.down1 = Down(base_c, base_c * 2)self.down2 = Down(base_c * 2, base_c * 4)self.down3 = Down(base_c * 4, base_c * 8)# 如果采用双线插值上采样为 2,采用转置矩阵上采样为 1factor = 2 if bilinear else 1# 最后一个下采样,如果是双线插值则输出通道为512,否则为1024self.down4 = Down(base_c * 8, base_c * 16 // factor)# 上采样,参数:输入通道,输出通道self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear)self.up2 = Up(base_c * 8, base_c * 4 // factor, bilinear)self.up3 = Up(base_c * 4, base_c * 2 // factor, bilinear)self.up4 = Up(base_c * 2, base_c, bilinear)# 最后的1*1输出卷积self.out_conv = OutConv(base_c, num_classes)# SE模块self.SE1 = SE_Block(base_c)self.SE2 = SE_Block(base_c * 2)self.SE3 = SE_Block(base_c * 4)self.SE4 = SE_Block(base_c * 8)self.SE5 = SE_Block(base_c * 16 // factor)self.SE6 = SE_Block(base_c * 8 // factor)self.SE7 = SE_Block(base_c * 4 // factor)self.SE8 = SE_Block(base_c * 2 // factor)# 正向传播过程def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:# 1. 定义最开始的两个卷积层x1 = self.in_conv(x)x1 = self.SE1(x1)# 2. contracting path(收缩路径)x2 = self.down1(x1)x2 = self.SE2(x2)x3 = self.down2(x2)x3 = self.SE3(x3)x4 = self.down3(x3)x4 = self.SE4(x4)x5 = self.down4(x4)x5 = self.SE5(x5)# 3. expanding path(扩展路径)x = self.up1(x5, x4)x = self.SE6(x)x = self.up2(x, x3)x = self.SE7(x)x = self.up3(x, x2)x = self.SE8(x)x = self.up4(x, x1)# 4. 最后1*1输出卷积logits = self.out_conv(x)return {"out": logits}

(4)只在最后的输出卷积前,添加SE模块

 

 模型修改代码

from typing import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F# se-unet04
'''-------------一、SE模块-----------------------------'''
#全局平均池化+1*1卷积核+ReLu+1*1卷积核+Sigmoid
class SE_Block(nn.Module):def __init__(self, inchannel, ratio=16):super(SE_Block, self).__init__()# 全局平均池化(Fsq操作)self.gap = nn.AdaptiveAvgPool2d((1, 1))# 两个全连接层(Fex操作)self.fc = nn.Sequential(nn.Linear(inchannel, inchannel // ratio, bias=False),  # 从 c -> c/rnn.ReLU(),nn.Linear(inchannel // ratio, inchannel, bias=False),  # 从 c/r -> cnn.Sigmoid())def forward(self, x):# 读取批数据图片数量及通道数b, c, h, w = x.size()# Fsq操作:经池化后输出b*c的矩阵y = self.gap(x).view(b, c)# Fex操作:经全连接层输出(b,c,1,1)矩阵y = self.fc(y).view(b, c, 1, 1)# Fscale操作:将得到的权重乘以原来的特征图xreturn x * y.expand_as(x)# 卷积,在uent中卷积一般成对使用
class DoubleConv(nn.Sequential):# 输入通道数, 输出通道数, mid_channels为成对卷积中第一个卷积层的输出通道数def __init__(self, in_channels, out_channels, mid_channels=None):if mid_channels is None:mid_channels = out_channelssuper(DoubleConv, self).__init__(# 3*3卷积,填充为1,卷积之后输入输出的特征图大小一致nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(mid_channels),nn.ReLU(inplace=True),nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))# 下采样
class Down(nn.Sequential):def __init__(self, in_channels, out_channels):super(Down, self).__init__(# 1.最大池化的窗口大小为2, 步长为2nn.MaxPool2d(2, stride=2),# 2.两个卷积DoubleConv(in_channels, out_channels))# 上采样
class Up(nn.Module):# bilinear是否采用双线性插值def __init__(self, in_channels, out_channels, bilinear=True):super(Up, self).__init__()if bilinear:# 使用双线性插值上采样# 上采样率为2,双线性插值模式self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)else:# 使用转置卷积上采样self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)self.conv = DoubleConv(in_channels, out_channels)def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:x1 = self.up(x1)# [N, C, H, W]# 上采样之后的特征图与要拼接的特征图,高度方向的差值diff_y = x2.size()[2] - x1.size()[2]# 上采样之后的特征图与要拼接的特征图,宽度方向的差值diff_x = x2.size()[3] - x1.size()[3]# padding_left, padding_right, padding_top, padding_bottom# 1.填充差值x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,diff_y // 2, diff_y - diff_y // 2])# 2.拼接x = torch.cat([x2, x1], dim=1)# 3.卷积,两次卷积x = self.conv(x)return x# 最后的1*1输出卷积
class OutConv(nn.Sequential):def __init__(self, in_channels, num_classes):super(OutConv, self).__init__(nn.Conv2d(in_channels, num_classes, kernel_size=1))class UNet(nn.Module):# 参数: 输入通道数, 分割任务个数, 是否使用双线插值, 网络中第一个卷积通道个数def __init__(self,in_channels: int = 1,num_classes: int = 2,bilinear: bool = True,base_c: int = 64):super(UNet, self).__init__()self.in_channels = in_channelsself.num_classes = num_classesself.bilinear = bilinearself.in_conv = DoubleConv(in_channels, base_c)# 下采样,参数:输入通道,输出通道self.down1 = Down(base_c, base_c * 2)self.down2 = Down(base_c * 2, base_c * 4)self.down3 = Down(base_c * 4, base_c * 8)# 如果采用双线插值上采样为 2,采用转置矩阵上采样为 1factor = 2 if bilinear else 1# 最后一个下采样,如果是双线插值则输出通道为512,否则为1024self.down4 = Down(base_c * 8, base_c * 16 // factor)# 上采样,参数:输入通道,输出通道self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear)self.up2 = Up(base_c * 8, base_c * 4 // factor, bilinear)self.up3 = Up(base_c * 4, base_c * 2 // factor, bilinear)self.up4 = Up(base_c * 2, base_c, bilinear)# 最后的1*1输出卷积self.out_conv = OutConv(base_c, num_classes)# SE模块self.SE4 = SE_Block(base_c)# 正向传播过程def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:# 1. 定义最开始的两个卷积层x1 = self.in_conv(x)# 2. contracting path(收缩路径)x2 = self.down1(x1)x3 = self.down2(x2)x4 = self.down3(x3)x5 = self.down4(x4)# 3. expanding path(扩展路径)x = self.up1(x5, x4)x = self.up2(x, x3)x = self.up3(x, x2)x = self.up4(x, x1)x = self.SE4(x)# 4. 最后1*1输出卷积logits = self.out_conv(x)return {"out": logits}

http://www.lryc.cn/news/90747.html

相关文章:

  • JVM垃圾回收篇之相关概念和算法
  • (学习日记)2023.04.27
  • 亚马逊CPC广告每日该怎么调整?
  • ffmpeg下载及ffmpy3安装使用
  • 设计模式之~原型模式
  • 多传感器融合SLAM --- 8.LIO-SAM基础知识解读
  • 多模态大模型时代下的文档图像智能分析与处理
  • SAP-MM-内向外向交货单
  • Mysql - date、datetime、timestamp 的区别
  • 离散数学_十章-图 ( 4 ):图的表示和图的同构
  • MySQL锁的分类
  • 程序员如何给变量起名字
  • 隔板法(求解的组数)
  • 智能文档处理黑科技,拥抱更高效的数字世界
  • vue ts写法
  • Unity中的PostProcessBuild:深入解析与实用案例
  • SimpleCG绘图函数(4)--绘制圆
  • 打包和优化
  • linuxOPS基础_Linux文件管理
  • C语言——数据在内存中的存储(上)
  • LinkedIn 国际版怎么在国内登录?怎么使用领英国际版?
  • QThread Class
  • C语言中的运算符及其优先级详解
  • 【C语言】语言篇——数组和字符串
  • Js写的二级联动和三级联动
  • 一文带你了解UI自动化测试框架
  • 【Linux】守护进程
  • Vue中组件和插件有什么区别?
  • 第五章 图像处理
  • 算法8.从暴力递归到动态规划1