超螺旋滑模控制(STA)
超螺旋滑模控制(Super Twisting Algorithm, STA)
超螺旋滑模控制又称超扭滑模控制,可以说是二阶系统中最好用的滑模控制方法。
系统模型
对于二阶系统可以建立具有标准柯西形式的微分方程组
{x˙1=x2x˙2=f+g⋅u\begin{cases} \dot x_1 = x_2 \\ \dot x_2 = f + g \cdot u \end{cases} {x˙1=x2x˙2=f+g⋅u
与传统滑模相比,超螺旋滑模,使用积分来获取实际控制量,不含高频切换量,所以系统中没有抖振。
令滑模面为s,只要满足以下的方程,即为稳定
{s˙=−λ∣s∣12⋅sign(s)+νν˙=−α⋅sign(s)\begin{cases} \dot s = -\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) + \nu \\ \dot \nu = - \alpha \cdot sign(s) \\ \end{cases} {s˙=−λ∣s∣21⋅sign(s)+νν˙=−α⋅sign(s)
控制器设计
设状态 x1x_1x1 的期望值为 xdx_dxd ,则跟踪误差为
{e1=x1−xde2=e˙1=x˙1−x˙d=x2−x˙d\begin{cases} e_1 = x_1 - x_d \\ e_2 = \dot e_1 = \dot x_1 - \dot x_d = x_2 - \dot x_d \end{cases} {e1=x1−xde2=e˙1=x˙1−x˙d=x2−x˙d
设计滑模面为
s=ce1+e2s = ce_1 + e_2 s=ce1+e2
则滑模面的导数为
s˙=ce˙1+e˙2=ce˙2+f+g⋅u−x¨d=−λ∣s∣12⋅sign(s)+ν=−λ∣s∣12⋅sign(s)−α⋅sign(s)\begin{align} \dot s & = c \dot e_1 + \dot e_2 \nonumber \\ & = c \dot e_2 + f + g \cdot u - \ddot x_d \nonumber\\ & = -\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) + \nu \nonumber\\ & = -\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) - \alpha \cdot sign(s) \nonumber\\ \end{align} s˙=ce˙1+e˙2=ce˙2+f+g⋅u−x¨d=−λ∣s∣21⋅sign(s)+ν=−λ∣s∣21⋅sign(s)−α⋅sign(s)
可以得到控制量
u=g−1(−f+x¨d−c1e2−λ∣s∣12sign(s)−α⋅sign(s))u = g ^ {-1} (-f + \ddot x_d - c_1e_2 - \lambda |s| ^ {\frac {1} {2}}sign(s) - \alpha \cdot sign(s)) u=g−1(−f+x¨d−c1e2−λ∣s∣21sign(s)−α⋅sign(s))
参数设定为
λ˙=ω1γ12α=λε+12(β+4ε2)\begin{align} \dot \lambda &= \omega _ 1 \sqrt{\frac {\gamma_1} {2}} \nonumber\\ \alpha &= \lambda \varepsilon + \frac{1}{2}(\beta+4\varepsilon ^ {2}) \nonumber \end{align} λ˙α=ω12γ1=λε+21(β+4ε2)
式中,α,β,ε,ω1,γ1\alpha , \beta , \varepsilon , \omega_1 , \gamma_1α,β,ε,ω1,γ1 均大于0。
稳定性证明
可以看出,控制量中含有的不再是滑模面,而是多项式 ∣s∣12|s| ^ {\frac {1} {2}}∣s∣21 。除此之外,在 s˙\dot ss˙ 中还出现了另一个参数 ν\nuν ,不妨把这两者定义为新的状态变量,在此基础上设成李雅普诺夫函数。
{z1=∣s∣12z2=ν⇒{z˙1=12∣s∣−12s˙=12∣s∣−12(−λ∣s∣12⋅sign(s)−α⋅sign(s))z˙2=ν˙=−α⋅sign(s)\begin{cases} z_1 = |s| ^ {\frac {1} {2}} \nonumber\\ z_2 = \nu \\ \end{cases} \Rightarrow \begin{cases} \dot z_1 = {\frac {1} {2}} |s| ^ {-\frac {1} {2}} \dot s = {\frac {1} {2}} |s| ^ {-\frac {1} {2}}(-\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) - \alpha \cdot sign(s)) \\ \dot z_2 = \dot \nu = -\alpha \cdot sign(s) \\ \end{cases} {z1=∣s∣21z2=ν⇒{z˙1=21∣s∣−21s˙=21∣s∣−21(−λ∣s∣21⋅sign(s)−α⋅sign(s))z˙2=ν˙=−α⋅sign(s)
将第一项带入第二项
{z˙1=12∣z1∣(−λz1+z2)z˙2=ν˙=−α⋅sign(s)=−α⋅sign(s)∣s∣12∣s∣−12=−αz1∣z1∣⇒{z˙1=12∣z1∣(−λz1+z2)z˙2=−αz1∣z1∣\begin{align} &\begin{cases} \dot z_1 = \frac {1} {2|z_1|}(-\lambda z_1 + z_2) \\ \dot z_2 = \dot \nu = -\alpha \cdot sign(s) = -\alpha \cdot sign(s) |s| ^ {\frac {1}{2}} |s| ^ {-\frac {1}{2}} = -\alpha {\frac {z_1}{|z_1|}} \nonumber \end{cases} \\ \nonumber & \Rightarrow \\ \nonumber &\begin{cases} \dot z_1 = \frac {1} {2|z_1|}(-\lambda z_1 + z_2) \\ \dot z_2 = -\alpha {\frac {z_1}{|z_1|}} \\ \end{cases} \\ \end{align} \nonumber {z˙1=2∣z1∣1(−λz1+z2)z˙2=ν˙=−α⋅sign(s)=−α⋅sign(s)∣s∣21∣s∣−21=−α∣z1∣z1⇒{z˙1=2∣z1∣1(−λz1+z2)z˙2=−α∣z1∣z1
设置新的状态变量为
Z=[z1z2]Z = \begin{bmatrix} z_1 \\ z_2 \\ \end{bmatrix} Z=[z1z2]
设置李雅普诺夫函数为
V0=ZTPZ=(β+4ε2)z12+z22−4εz1z2V_0 = Z^TPZ = (\beta+4\varepsilon^2)z_1^2 + z_2^2 - 4\varepsilon z_1 z_2 V0=ZTPZ=(β+4ε2)z12+z22−4εz1z2
其中PPP 为
P=[β+4ε2−2ε−2ε1]P=\begin{bmatrix} \beta+4\varepsilon^2 & -2\varepsilon \\ -2\varepsilon & 1 \\ \end{bmatrix} P=[β+4ε2−2ε−2ε1]
李雅普诺夫函数的导数
对李雅普诺夫函数进行求导
V˙0=2(β+4ε2)z1z˙1+2z2z˙2−4εz˙1z2−4εz1z˙2=2(β+4ε2)z1(12∣z1∣(−λz1+z2))+2z2(−αz1∣z1∣)−4ε(12∣z1∣(−λz1+z2))z2−4εz1(−λz1+z2)=−1∣z1∣ZTQZ\begin{align} \dot V_0 &= 2(\beta+4\varepsilon^2)z_1 \dot z_1 + 2z_2 \dot z_2 - 4\varepsilon \dot z_1 z_2 - 4\varepsilon z_1 \dot z_2 \nonumber\\ &= 2(\beta+4\varepsilon^2)z_1 (\frac {1} {2|z_1|}(-\lambda z_1 + z_2)) + 2z_2(-\alpha {\frac {z_1}{|z_1|}}) - 4\varepsilon (\frac {1} {2|z_1|}(-\lambda z_1 + z_2)) z_2 - 4\varepsilon z_1 (-\lambda z_1 + z_2) \nonumber\\ &= - \frac {1} {|z_1|} Z^T Q Z \nonumber \end{align} V˙0=2(β+4ε2)z1z˙1+2z2z˙2−4εz˙1z2−4εz1z˙2=2(β+4ε2)z1(2∣z1∣1(−λz1+z2))+2z2(−α∣z1∣z1)−4ε(2∣z1∣1(−λz1+z2))z2−4εz1(−λz1+z2)=−∣z1∣1ZTQZ
其中 QQQ 为
Q=[−4αε+λ(β+4ε2)−12(β+4ε2)+α−λε−12(β+4ε2)+α−λε2ε]=[ABCD]Q = \begin{bmatrix} -4\alpha \varepsilon + \lambda(\beta+4 \varepsilon^2) & -\frac{1}{2}(\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon \\ -\frac{1}{2} (\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon & 2\varepsilon \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} Q=[−4αε+λ(β+4ε2)−21(β+4ε2)+α−λε−21(β+4ε2)+α−λε2ε]=[ACBD]
这样我们得到李雅普诺夫函数
V˙0=−1∣z1∣ZTQZ\dot V_0 = - \frac {1} {|z_1|} Z^T Q Z V˙0=−∣z1∣1ZTQZ
求 QQQ 的特征根
∣pI−Q∣=∣p−ABCp−D∣=p2−(A+D)p+AD−BC=0|pI -Q| = \begin{vmatrix} p-A & B \\ C & p - D \end{vmatrix} = p^2-(A+D)p + AD - BC = 0 ∣pI−Q∣=p−ACBp−D=p2−(A+D)p+AD−BC=0
解方程组解得特征根为
{pmax(Q)=A+D+(A−D)2+4BC2pmin(Q)=A+D−(A−D)2+4BC2\begin{cases} p_{max}(Q) = \frac {A+D + \sqrt{(A-D)^2+4BC}} {2}\\ p_{min}(Q) = \frac {A+D - \sqrt{(A-D)^2+4BC}} {2} \end{cases} ⎩⎨⎧pmax(Q)=2A+D+(A−D)2+4BCpmin(Q)=2A+D−(A−D)2+4BC
所以
pmin(Q)ZTZ=A+D+(A−D)2+4BC2(z12+z22)p_{min}(Q) Z^T Z = \frac {A+D + \sqrt{(A-D)^2+4BC}} {2} (z_1^2 + z_2^2) pmin(Q)ZTZ=2A+D+(A−D)2+4BC(z12+z22)
ZTQZ=Az12+(B+C)Z1Z2+Dz22Z^TQZ = A z_1^2 + (B+C)Z_1Z_2 + Dz_2^2 ZTQZ=Az12+(B+C)Z1Z2+Dz22
比较 $p_{min}(Q) Z^T Z 与与与Z^TQZ$的大小,为了简便运算,将根号项用 RRR 表示
Dval=2(ZTQZ−pmin(Q)ZTZ)=(A−D+R)z12+(D−A+R)z22+2(B+C)z1z2=(A−D+R)[z12+(D−A+R)(A−D+R)z22+2(B+C)(A−D+R)z1z2]=(A−D+R)[z12+(D−A+R)(D+R−A)(A−D+R)(D+R−A)z22+2(B+C)(R+D−A)(A−D+R)(R+D−A)z1z2]=(A−D+R)[z12+(D+R−A)24BCz22+2(B+C)(R+D−A)4BCz1z2]=(A−D+R)[z12+(D+R−A)24BCz22+(D+R−A)24BCz1z2(D+R−A)24BCz1z2+2(B+C)(R+D−A)4BCz1z2]=(A−D+R)[(z1+D+R−A2BCz2)2+(2B+2C−4BC)(R+D−A)4BCz1z2]\begin{align} D_{val} &=2(Z^TQZ - p_{min}(Q) Z^T Z ) \nonumber\\ &= (A-D+R)z_1^2+(D-A+R)z_2^2+2(B+C)z_1z_2 \nonumber\\ &= (A-D+R)\left[z_1^2 + \frac{(D-A+R)}{(A-D+R)}z_2^2 + \frac{2(B+C)}{(A-D+R)}z_1z_2\right] \nonumber\\ &= (A-D+R)\left[z_1^2 + \frac{(D-A+R)(D+R-A)}{(A-D+R)(D+R-A)}z_2^2 + \frac{2(B+C)(R+D-A)}{(A-D+R)(R+D-A)}z_1z_2\right] \nonumber \\ &= (A-D+R)\left[z_1^2 + \frac{(D+R-A)^2}{4BC}z_2^2 + \frac{2(B+C)(R+D-A)}{4BC}z_1z_2\right] \nonumber\\ &= (A-D+R)\left[z_1^2 + \frac{(D+R-A)^2}{4BC}z_2^2 + \sqrt{\frac{(D+R-A)^2}{4BC}}z_1z_2 \sqrt{\frac{(D+R-A)^2}{4BC}}z_1z_2 + \frac{2(B+C)(R+D-A)}{4BC}z_1z_2\right] \nonumber\\ &= (A-D+R)\left[(z_1 + \frac{D+R-A}{2 \sqrt{BC}}z_2)^2 + \frac{(2B+2C-4\sqrt{BC})(R+D-A)}{4BC}z_1z_2\right] \nonumber\\ \end{align} Dval=2(ZTQZ−pmin(Q)ZTZ)=(A−D+R)z12+(D−A+R)z22+2(B+C)z1z2=(A−D+R)[z12+(A−D+R)(D−A+R)z22+(A−D+R)2(B+C)z1z2]=(A−D+R)[z12+(A−D+R)(D+R−A)(D−A+R)(D+R−A)z22+(A−D+R)(R+D−A)2(B+C)(R+D−A)z1z2]=(A−D+R)[z12+4BC(D+R−A)2z22+4BC2(B+C)(R+D−A)z1z2]=(A−D+R)[z12+4BC(D+R−A)2z22+4BC(D+R−A)2z1z24BC(D+R−A)2z1z2+4BC2(B+C)(R+D−A)z1z2]=(A−D+R)[(z1+2BCD+R−Az2)2+4BC(2B+2C−4BC)(R+D−A)z1z2]
上式中
R+A−D=(A−D)2+4BC+(A−D)≥0R + A - D = \sqrt{(A-D)^2+4BC} + (A - D) \ge 0 R+A−D=(A−D)2+4BC+(A−D)≥0
(z1+D+R−A2BCz2)2≥0(z_1 + \frac{D+R-A}{2 \sqrt{BC}}z_2)^2 \ge 0 (z1+2BCD+R−Az2)2≥0
{2B+2C−4BC≥0R+D−A=(A−D)2+4BC+(D−A)≥0⇒(2B+2C−4BC)(R+D−A)4BC≥0\begin{cases} 2B+2C-4\sqrt{BC} \ge 0 \\ R+D-A = \sqrt{(A-D)^2+4BC} + (D - A) \ge 0 \\ \end{cases} \Rightarrow \frac{(2B+2C-4\sqrt{BC})(R+D-A)}{4BC} \ge 0 {2B+2C−4BC≥0R+D−A=(A−D)2+4BC+(D−A)≥0⇒4BC(2B+2C−4BC)(R+D−A)≥0
所以我们得到
ZTQZ≥pmin(Q)ZTZZ^TQZ \ge p_{min}(Q) Z^T Z ZTQZ≥pmin(Q)ZTZ
同理可证
ZTQZ≤pmax(Q)ZTZZ^TQZ \le p_{max}(Q) Z^T Z ZTQZ≤pmax(Q)ZTZ
李雅普诺夫函数导数的变换
上式是根据 V˙0=−1∣z1∣ZTQZ\dot V_0 = -\frac {1} {|z_1|} Z^TQZV˙0=−∣z1∣1ZTQZ 做出的,对于 V0=ZTPZV_0 = Z ^ T P ZV0=ZTPZ 同样根据上式可得
向量的0范数,向量中非零元素的个数
向量的1范数,向量中各元素绝对值的模
向量的2范数,通常意义上的模值,欧几里得范数
向量的无穷范数,向量的最大值矩阵的1范数,列和范数,所有矩阵列向量绝对值之和的最大值
矩阵的2范数,谱范数,即 ATAA^TAATA矩阵的最大特征值的开平方
矩阵的无穷范数,行和范数,所有矩阵行向量绝对值之和的最大值
矩阵的F范数,Forbenius范数,所有矩阵元素绝对值的平方和再开放
ZTPZ≥pmin(P)ZTZ⇒(ZTPZ)1/2≥pmin1/2(P)(ZTZ)1/2=pmin1/2(P)∥Z∥⇒∥Z∥≤(ZTPZ)1/2pmin1/2(P)=V01/2pmin1/2(P)\begin{gather} Z^TPZ \ge p_{min}(P)Z^TZ \nonumber\\ \Rightarrow (Z^TPZ)^{1/2} \ge p_{min}^{1/2}(P)(Z^TZ)^{1/2} = p_{min}^{1/2}(P) \Vert Z \Vert \nonumber\\ \Rightarrow \Vert Z\Vert \le \frac{(Z^TPZ)^{1/2}}{p_{min}^{1/2}(P)} = \frac {V_0^{1/2}} {p_{min}^{1/2}(P)} \nonumber \end{gather} ZTPZ≥pmin(P)ZTZ⇒(ZTPZ)1/2≥pmin1/2(P)(ZTZ)1/2=pmin1/2(P)∥Z∥⇒∥Z∥≤pmin1/2(P)(ZTPZ)1/2=pmin1/2(P)V01/2
ZZZ的欧几里得范数为
∥Z∥=z12+z22=(∣s∣12sign(s))2+ν2=∣s∣+ν≥∣s∣=∣z1∣\Vert Z \Vert = \sqrt {z_1^2 + z_2^2} = \sqrt{(|s| ^ {\frac {1} {2}}sign(s) )^2 + \nu ^ 2} = \sqrt{|s| + \nu} \ge \sqrt{|s|} = |z_1| ∥Z∥=z12+z22=(∣s∣21sign(s))2+ν2=∣s∣+ν≥∣s∣=∣z1∣
所以
−1∣z1∣≤−1∥Z∥-\frac {1}{\vert z_1 \vert} \le -\frac {1}{\Vert Z \Vert} −∣z1∣1≤−∥Z∥1
我们再次回到 V˙0\dot V_0V˙0
V˙0=−1∣z1∣ZTQZ≤−1∣z1∣pmin(Q)ZTZ=−1∣z1∣pmin(Q)∥Z∥2≤−1∥Z∥pmin(Q)∥Z∥2=−pmin(Q)∥Z∥≤−pmin(Q)V012pmin12(P)=−rV012\begin{align} \dot V_0 &= - \frac{1} {|z_1|} Z^TQZ \le - \frac{1} {|z_1|} p_{min}(Q)Z^TZ \nonumber \\ &= - \frac{1} {|z_1|} p_{min}(Q) \Vert Z \Vert ^ 2 \le -\frac {1}{\Vert Z \Vert} p_{min}(Q) \Vert Z \Vert ^ 2 \nonumber\\ &= -p_{min}(Q) \Vert Z \Vert \le -p_{min}(Q) \frac {V_0^{\frac{1}{2}}} {p_{min}^{\frac{1}{2}}(P)} \nonumber\\ &= -r V_0^{\frac{1}{2}} \nonumber \end{align} V˙0=−∣z1∣1ZTQZ≤−∣z1∣1pmin(Q)ZTZ=−∣z1∣1pmin(Q)∥Z∥2≤−∥Z∥1pmin(Q)∥Z∥2=−pmin(Q)∥Z∥≤−pmin(Q)pmin21(P)V021=−rV021
其中
r=pmin(Q)pmin1/2(P)r = \frac {p_{min}(Q)} {p_{min}^{1/2}(P)} r=pmin1/2(P)pmin(Q)
若系统满足 V˙≤−rV12\dot V \le -rV^{\frac {1} {2}}V˙≤−rV21 其中r>0r>0r>0 ,则系统可以在有限时间内稳定
矩阵Q正定性的保证
上面的证明保证了系统具有李雅普诺夫稳定性,但是只有在r>0r > 0r>0的情况下才能保证系统稳定,此时需要 pmin(Q){p_{min}(Q)}pmin(Q)
与 pmin1/2(P){p_{min}^{1/2}(P)}pmin1/2(P) 保持同号,由于矩阵PPP为正定矩阵,所以pmin1/2(P){p_{min}^{1/2}(P)}pmin1/2(P)必大于0,那么需要保证pmin(Q){p_{min}(Q)}pmin(Q)也大于0。
正定矩阵的特征值都是正数
Q=[−4αε+λ(β+4ε2)−12(β+4ε2)+α−λε−12(β+4ε2)+α−λε2ε]Q = \begin{bmatrix} -4\alpha \varepsilon + \lambda(\beta+4 \varepsilon^2) & -\frac{1}{2}(\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon \\ -\frac{1}{2} (\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon & 2\varepsilon \end{bmatrix} Q=[−4αε+λ(β+4ε2)−21(β+4ε2)+α−λε−21(β+4ε2)+α−λε2ε]
不妨直接取
α=λε+12(β+4ε2)\alpha = \lambda \varepsilon + \frac{1}{2}(\beta+4\varepsilon^2) α=λε+21(β+4ε2)
这样的话可以简化一下
Q=[(λ−2ε)(β+4ε2)−4λε2002ε]Q = \begin{bmatrix} (\lambda-2\varepsilon)(\beta+4 \varepsilon^2)-4\lambda \varepsilon^2 & 0\\ 0 & 2\varepsilon \end{bmatrix} Q=[(λ−2ε)(β+4ε2)−4λε2002ε]
所以 QQQ 的特征根为
{p1=(λ−2ε)(β+4ε2)−4λε2p2=2ε\begin{cases} p_1 = (\lambda-2\varepsilon)(\beta+4 \varepsilon^2)-4\lambda \varepsilon^2 \\ p_2 = 2\varepsilon \end{cases} {p1=(λ−2ε)(β+4ε2)−4λε2p2=2ε
由于 ε>0\varepsilon > 0ε>0 所以 p2>0p_2 > 0p2>0非常显然,现在只需要保证 p1>0p_1>0p1>0,则可以有
λ>2ε(β+4ε2)β\lambda > \frac{2\varepsilon(\beta+4\varepsilon^2)} {\beta} λ>β2ε(β+4ε2)
重写李雅普诺夫函数
上一节中给出了保证 QQQ 正定性的条件,但是 α\alphaα 和 λ\lambdaλ 这两个参数值是人为给出的,因此需要把这两个参数加入到李雅普诺夫函数中来
V=V0+12γ1(λ−λ∗)2+12γ2(α−α∗)2V = V_0 + \frac {1} {2\gamma_1} (\lambda-\lambda^{*})^2 + \frac{1}{2\gamma_2} (\alpha-\alpha^{*})^2 V=V0+2γ11(λ−λ∗)2+2γ21(α−α∗)2
其中 λ∗α∗\lambda^{*} \ \alpha^{*}λ∗ α∗ 为未知常数,对其求导
V˙=V˙0+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙≤−rV012+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙=−rV012+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙−ω12γ1∣λ−λ∗∣+ω12γ1∣λ−λ∗∣−ω22γ2∣α−α∗∣+ω22γ2∣α−α∗∣\begin{align} \dot V &= \dot V_0 + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha \le -r V_0^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha \nonumber\\ &= -r V_0^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha -\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|+\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| -\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|+\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber \end{align} V˙=V˙0+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙≤−rV021+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙=−rV021+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙−2γ1ω1∣λ−λ∗∣+2γ1ω1∣λ−λ∗∣−2γ2ω2∣α−α∗∣+2γ2ω2∣α−α∗∣
根据 (x2+y2+z2)≤∣x∣+∣y∣+∣z∣(x^2 + y^2 + z^2) \le |x| + |y| + |z|(x2+y2+z2)≤∣x∣+∣y∣+∣z∣ 有
−rV012−ω12γ1∣λ−λ∗∣−ω22γ2∣α−α∗∣≤−[r2V012+ω122γ1∣λ−λ∗∣2+ω222γ2∣α−α∗∣2]12-r V_0^{\frac{1}{2}} - \frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|-\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \le - \left[r^2V_0^{\frac{1}{2}}+ \frac {\omega_1^2} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|^2 + \frac {\omega_2^2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|^2\right]^{\frac{1}{2}} −rV021−2γ1ω1∣λ−λ∗∣−2γ2ω2∣α−α∗∣≤−[r2V021+2γ1ω12∣λ−λ∗∣2+2γ2ω22∣α−α∗∣2]21
设 r,ω1,ω2r,\omega_1,\omega_2r,ω1,ω2 中最小的数为 nnn,则上式为
[r2V012+ω122γ1∣λ−λ∗∣2+ω222γ2∣α−α∗∣2]12≤−n[V012+12γ1∣λ−λ∗∣2+12γ2∣α−α∗∣2]=−nV12\left[r^2V_0^{\frac{1}{2}}+ \frac {\omega_1^2} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|^2 + \frac {\omega_2^2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|^2\right]^{\frac{1}{2}} \le-n \left[V_0^{\frac{1}{2}}+ \frac {1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|^2 + \frac {1} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|^2 \right] = -nV^{\frac{1}{2}} [r2V021+2γ1ω12∣λ−λ∗∣2+2γ2ω22∣α−α∗∣2]21≤−n[V021+2γ11∣λ−λ∗∣2+2γ21∣α−α∗∣2]=−nV21
带入 V˙\dot VV˙ 有
V˙≤−rV012+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙−ω12γ1∣λ−λ∗∣+ω12γ1∣λ−λ∗∣−ω22γ2∣α−α∗∣+ω22γ2∣α−α∗∣≤−nV12+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙+ω12γ1∣λ−λ∗∣+ω22γ2∣α−α∗∣\begin {align} \dot V &\le -r V_0^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha -\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|+\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| -\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|+\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber\\ &\le -nV^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha +\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| +\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber \end {align} V˙≤−rV021+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙−2γ1ω1∣λ−λ∗∣+2γ1ω1∣λ−λ∗∣−2γ2ω2∣α−α∗∣+2γ2ω2∣α−α∗∣≤−nV21+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙+2γ1ω1∣λ−λ∗∣+2γ2ω2∣α−α∗∣
由于 λ∗α∗\lambda^{*} \ \alpha^{*}λ∗ α∗ 为未知常数,那我们假设 λ∗>λ,α∗>α\lambda^{*}>\lambda , \alpha^{*} > \alphaλ∗>λ,α∗>α ,总能找到两个常数满足这两个条件
V˙≤−nV12+1γ1(λ−λ∗)λ˙+1γ2(α−α∗)α˙+ω12γ1∣λ−λ∗∣+ω22γ2∣α−α∗∣=−nV12−1γ1∣λ−λ∗∣λ˙−1γ2∣α−α∗∣α˙+ω12γ1∣λ−λ∗∣+ω22γ2∣α−α∗∣=−nV12+∣λ−λ∗∣(ω12γ1−λ˙γ1)+∣α−α∗∣(ω22γ2−λ˙γ2)\begin{align} \dot V &\le -nV^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha +\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| +\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber\\ &= -nV^{\frac{1}{2}} - \frac {1} {\gamma_1} |\lambda-\lambda^{*}|\dot \lambda - \frac{1}{\gamma_2} |\alpha-\alpha^{*}|\dot \alpha +\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| +\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber\\ &= -nV^{\frac{1}{2}} + |\lambda-\lambda^{*}|(\frac {\omega_1} {\sqrt{2 \gamma_1}} - \frac{\dot \lambda} {\gamma_1}) + |\alpha-\alpha^{*}|(\frac {\omega_2} {\sqrt{2 \gamma_2}} - \frac{\dot \lambda} {\gamma_2}) \nonumber \end{align} V˙≤−nV21+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙+2γ1ω1∣λ−λ∗∣+2γ2ω2∣α−α∗∣=−nV21−γ11∣λ−λ∗∣λ˙−γ21∣α−α∗∣α˙+2γ1ω1∣λ−λ∗∣+2γ2ω2∣α−α∗∣=−nV21+∣λ−λ∗∣(2γ1ω1−γ1λ˙)+∣α−α∗∣(2γ2ω2−γ2λ˙)
此时若令
λ˙=ω1γ12\dot \lambda = \omega_1 \sqrt{\frac{\gamma_1}{2}} λ˙=ω12γ1
则
V˙≤−nV12+∣λ−λ∗∣(ω22γ2−α˙γ2)=−nV12+η\dot V \le -nV^{\frac{1}{2}} + |\lambda-\lambda^{*}|(\frac {\omega_2} {\sqrt{2 \gamma_2}} - \frac{\dot \alpha} {\gamma_2}) = -nV^{\frac{1}{2}} + \eta V˙≤−nV21+∣λ−λ∗∣(2γ2ω2−γ2α˙)=−nV21+η
其中
η=∣λ−λ∗∣(ω22γ2−α˙γ2)\eta = |\lambda-\lambda^{*}|(\frac {\omega_2} {\sqrt{2 \gamma_2}} - \frac{\dot \alpha} {\gamma_2}) η=∣λ−λ∗∣(2γ2ω2−γ2α˙)
所以此系统具有李雅普诺夫稳定性,尽管有 η\etaη 存在,系统仍然可以在一定程度上保持稳定,原因在于我们证明了 V˙≤−nV12≤0\dot V \le -nV^{\frac{1}{2}} \le 0V˙≤−nV21≤0 而不是传统的 V˙≤0\dot V \le 0V˙≤0