当前位置: 首页 > news >正文

C++算法模板(转自acwing)

快速排序算法模板 —— 模板题 AcWing 785. 快速排序

void quick_sort(int q[], int l, int r)
{if (l >= r) return;int i = l - 1, j = r + 1, x = q[l + r >> 1];while (i < j){do i ++ ; while (q[i] < x);do j -- ; while (q[j] > x);if (i < j) swap(q[i], q[j]);}quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

归并排序算法模板 —— 模板题 AcWing 787. 归并排序

void merge_sort(int q[], int l, int r)
{if (l >= r) return;int mid = l + r >> 1;merge_sort(q, l, mid);merge_sort(q, mid + 1, r);int k = 0, i = l, j = mid + 1;while (i <= mid && j <= r)if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];else tmp[k ++ ] = q[j ++ ];while (i <= mid) tmp[k ++ ] = q[i ++ ];while (j <= r) tmp[k ++ ] = q[j ++ ];for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}

整数二分算法模板 —— 模板题 AcWing 789. 数的范围

bool check(int x) {/* ... */} // 检查x是否满足某种性质
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{while (l < r){int mid = l + r >> 1;if (check(mid)) r = mid;    // check()判断mid是否满足性质else l = mid + 1;}return l;
}

// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:

int bsearch_2(int l, int r)
{while (l < r){int mid = l + r + 1 >> 1;if (check(mid)) l = mid;else r = mid - 1;}return l;
}

浮点数二分算法模板 —— 模板题 AcWing 790. 数的三次方根

bool check(double x) {/* ... */} // 检查x是否满足某种性质double bsearch_3(double l, double r)
{const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求while (r - l > eps){double mid = (l + r) / 2;if (check(mid)) r = mid;else l = mid;}return l;
}

高精度加法 —— 模板题 AcWing 791. 高精度加法

// C = A + B, A >= 0, B >= 0vector<int> add(vector<int> &A, vector<int> &B)
{if (A.size() < B.size()) return add(B, A);vector<int> C;int t = 0;for (int i = 0; i < A.size(); i ++ ){t += A[i];if (i < B.size()) t += B[i];C.push_back(t % 10);t /= 10;}if (t) C.push_back(t);return C;
}

高精度减法 —— 模板题 AcWing 792. 高精度减法

// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{vector<int> C;for (int i = 0, t = 0; i < A.size(); i ++ ){t = A[i] - t;if (i < B.size()) t -= B[i];C.push_back((t + 10) % 10);if (t < 0) t = 1;else t = 0;}while (C.size() > 1 && C.back() == 0) C.pop_back();return C;
}

高精度乘低精度 —— 模板题 AcWing 793. 高精度乘法

// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b)
{vector<int> C;int t = 0;for (int i = 0; i < A.size() || t; i ++ ){if (i < A.size()) t += A[i] * b;C.push_back(t % 10);t /= 10;}while (C.size() > 1 && C.back() == 0) C.pop_back();return C;
}

高精度除以低精度 —— 模板题 AcWing 794. 高精度除法

// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{vector<int> C;r = 0;for (int i = A.size() - 1; i >= 0; i -- ){r = r * 10 + A[i];C.push_back(r / b);r %= b;}reverse(C.begin(), C.end());while (C.size() > 1 && C.back() == 0) C.pop_back();return C;
}

一维前缀和 —— 模板题 AcWing 795. 前缀和

S[i] = a[1] + a[2] + ... a[i]

a[l] + ... + a[r] = S[r] - S[l - 1]

二维前缀和 —— 模板题 AcWing 796. 子矩阵的和

S[i, j] = 第i行j列格子左上部分所有元素的和

以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:

S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]

一维差分 —— 模板题 AcWing 797. 差分

给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c

二维差分 —— 模板题 AcWing 798. 差分矩阵

给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:

S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c

位运算 —— 模板题 AcWing 801. 二进制中1的个数

求n的第k位数字: n >> k & 1

返回n的最后一位1:lowbit(n) = n & -n

双指针算法 —— 模板题 AcWIng 799. 最长连续不重复子序列, AcWing 800. 数组元素的目标和

for (int i = 0, j = 0; i < n; i ++ )
{while (j < i && check(i, j)) j ++ ;// 具体问题的逻辑
}

常见问题分类:

    (1) 对于一个序列,用两个指针维护一段区间

    (2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作

离散化 —— 模板题 AcWing 802. 区间和

vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end());   // 去掉重复元素
// 二分求出x对应的离散化的值
int find(int x) // 找到第一个大于等于x的位置
{int l = 0, r = alls.size() - 1;while (l < r){int mid = l + r >> 1;if (alls[mid] >= x) r = mid;else l = mid + 1;}return r + 1; // 映射到1, 2, ...n
}

区间合并 —— 模板题 AcWing 803. 区间合并

// 将所有存在交集的区间合并
void merge(vector<PII> &segs)
{vector<PII> res;sort(segs.begin(), segs.end());int st = -2e9, ed = -2e9;for (auto seg : segs)if (ed < seg.first){if (st != -2e9) res.push_back({st, ed});st = seg.first, ed = seg.second;}else ed = max(ed, seg.second);if (st != -2e9) res.push_back({st, ed});segs = res;
}

单链表 —— 模板题 AcWing 826. 单链表

// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点
int head, e[N], ne[N], idx;
// 初始化
void init()
{head = -1;idx = 0;
}
// 在链表头插入一个数a
void insert(int a)
{e[idx] = a, ne[idx] = head, head = idx ++ ;
}
// 将头结点删除,需要保证头结点存在
void remove()
{head = ne[head];
}

双链表 —— 模板题 AcWing 827. 双链表

// e[]表示节点的值,l[]表示节点的左指针,r[]表示节点的右指针,idx表示当前用到了哪个节点
int e[N], l[N], r[N], idx;
// 初始化
void init()
{//0是左端点,1是右端点r[0] = 1, l[1] = 0;idx = 2;
}
// 在节点a的右边插入一个数x
void insert(int a, int x)
{e[idx] = x;l[idx] = a, r[idx] = r[a];l[r[a]] = idx, r[a] = idx ++ ;
}
// 删除节点a
void remove(int a)
{l[r[a]] = l[a];r[l[a]] = r[a];
}

栈 —— 模板题 AcWing 828. 模拟栈

// tt表示栈顶
int stk[N], tt = 0;
// 向栈顶插入一个数
stk[ ++ tt] = x;
// 从栈顶弹出一个数
tt -- ;
// 栈顶的值
stk[tt];
// 判断栈是否为空,如果 tt > 0,则表示不为空
if (tt > 0)
{}

队列 —— 模板题 AcWing 829. 模拟队列

1. 普通队列:

// hh 表示队头,tt表示队尾
int q[N], hh = 0, tt = -1;
// 向队尾插入一个数
q[ ++ tt] = x;
// 从队头弹出一个数
hh ++ ;
// 队头的值
q[hh];
// 判断队列是否为空,如果 hh <= tt,则表示不为空
if (hh <= tt)
{}

2. 循环队列

// hh 表示队头,tt表示队尾的后一个位置
int q[N], hh = 0, tt = 0;
// 向队尾插入一个数
q[tt ++ ] = x;
if (tt == N) tt = 0;
// 从队头弹出一个数
hh ++ ;
if (hh == N) hh = 0;
// 队头的值
q[hh];
// 判断队列是否为空,如果hh != tt,则表示不为空
if (hh != tt)
{}

单调栈 —— 模板题 AcWing 830. 单调栈

常见模型:找出每个数左边离它最近的比它大/小的数

int tt = 0;
for (int i = 1; i <= n; i ++ )
{while (tt && check(stk[tt], i)) tt -- ;stk[ ++ tt] = i;
}

单调队列 —— 模板题 AcWing 154. 滑动窗口

常见模型:找出滑动窗口中的最大值/最小值

int hh = 0, tt = -1;
for (int i = 0; i < n; i ++ )
{while (hh <= tt && check_out(q[hh])) hh ++ ;  // 判断队头是否滑出窗口while (hh <= tt && check(q[tt], i)) tt -- ;q[ ++ tt] = i;
}

KMP —— 模板题 AcWing 831. KMP字符串

// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度

求模式串的Next数组:

for (int i = 2, j = 0; i <= m; i ++ )
{while (j && p[i] != p[j + 1]) j = ne[j];if (p[i] == p[j + 1]) j ++ ;ne[i] = j;
}
// 匹配
for (int i = 1, j = 0; i <= n; i ++ )
{while (j && s[i] != p[j + 1]) j = ne[j];if (s[i] == p[j + 1]) j ++ ;if (j == m){j = ne[j];// 匹配成功后的逻辑}
}

Trie树 —— 模板题 AcWing 835. Trie字符串统计

int son[N][26], cnt[N], idx;
// 0号点既是根节点,又是空节点
// son[][]存储树中每个节点的子节点
// cnt[]存储以每个节点结尾的单词数量
// 插入一个字符串
void insert(char *str)
{int p = 0;for (int i = 0; str[i]; i ++ ){int u = str[i] - 'a';if (!son[p][u]) son[p][u] = ++ idx;p = son[p][u];}cnt[p] ++ ;
}
// 查询字符串出现的次数
int query(char *str)
{int p = 0;for (int i = 0; str[i]; i ++ ){int u = str[i] - 'a';if (!son[p][u]) return 0;p = son[p][u];}return cnt[p];
}

并查集 —— 模板题 AcWing 836. 合并集合, AcWing 837. 连通块中点的数量

(1)朴素并查集:

int p[N]; //存储每个点的祖宗节点
// 返回x的祖宗节点
int find(int x)
{if (p[x] != x) p[x] = find(p[x]);return p[x];
}
// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ ) p[i] = i;
// 合并a和b所在的两个集合:
p[find(a)] = find(b);

(2)维护size的并查集:

    int p[N], size[N];//p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量// 返回x的祖宗节点int find(int x){if (p[x] != x) p[x] = find(p[x]);return p[x];}// 初始化,假定节点编号是1~nfor (int i = 1; i <= n; i ++ ){p[i] = i;size[i] = 1;}// 合并a和b所在的两个集合:size[find(b)] += size[find(a)];p[find(a)] = find(b);

(3)维护到祖宗节点距离的并查集:

    int p[N], d[N];//p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离// 返回x的祖宗节点int find(int x){if (p[x] != x){int u = find(p[x]);d[x] += d[p[x]];p[x] = u;}return p[x];}// 初始化,假定节点编号是1~nfor (int i = 1; i <= n; i ++ ){p[i] = i;d[i] = 0;}// 合并a和b所在的两个集合:p[find(a)] = find(b);d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量

堆 —— 模板题 AcWing 838. 堆排序, AcWing 839. 模拟堆

// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
// ph[k]存储第k个插入的点在堆中的位置
// hp[k]存储堆中下标是k的点是第几个插入的
int h[N], ph[N], hp[N], size;
// 交换两个点,及其映射关系
void heap_swap(int a, int b)
{swap(ph[hp[a]],ph[hp[b]]);swap(hp[a], hp[b]);swap(h[a], h[b]);
}
void down(int u)
{int t = u;if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;if (u != t){heap_swap(u, t);down(t);}
}
void up(int u)
{while (u / 2 && h[u] < h[u / 2]){heap_swap(u, u / 2);u >>= 1;}
}
// O(n)建堆
for (int i = n / 2; i; i -- ) down(i);

一般哈希 —— 模板题 AcWing 840. 模拟散列表

(1) 拉链法   

    int h[N], e[N], ne[N], idx;// 向哈希表中插入一个数void insert(int x){int k = (x % N + N) % N;e[idx] = x;ne[idx] = h[k];h[k] = idx ++ ;}// 在哈希表中查询某个数是否存在bool find(int x){int k = (x % N + N) % N;for (int i = h[k]; i != -1; i = ne[i])if (e[i] == x)return true;return false;}

(2) 开放寻址法    

    int h[N];// 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置int find(int x){int t = (x % N + N) % N;while (h[t] != null && h[t] != x){t++ ;if (t == N) t = 0;}return t;}

字符串哈希 —— 模板题 AcWing 841. 字符串哈希

核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低

小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

typedef unsigned long long ULL;
ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64
// 初始化
p[0] = 1;
for (int i = 1; i <= n; i ++ )
{h[i] = h[i - 1] * P + str[i];p[i] = p[i - 1] * P;
}
// 计算子串 str[l ~ r] 的哈希值
ULL get(int l, int r)
{return h[r] - h[l - 1] * p[r - l + 1];
}

C++ STL简介

vector, 变长数组,倍增的思想size()  返回元素个数empty()  返回是否为空clear()  清空front()/back()push_back()/pop_back()begin()/end()支持比较运算,按字典序
pair<int, int>first, 第一个元素second, 第二个元素支持比较运算,以first为第一关键字,以second为第二关键字(字典序)
string,字符串size()/length()  返回字符串长度empty()clear()substr(起始下标,(子串长度))  返回子串c_str()  返回字符串所在字符数组的起始地址
queue, 队列size()empty()push()  向队尾插入一个元素front()  返回队头元素back()  返回队尾元素pop()  弹出队头元素
priority_queue, 优先队列,默认是大根堆size()empty()push()  插入一个元素top()  返回堆顶元素pop()  弹出堆顶元素定义成小根堆的方式:priority_queue<int, vector<int>, greater<int>> q;
stack, 栈size()empty()push()  向栈顶插入一个元素top()  返回栈顶元素pop()  弹出栈顶元素
deque, 双端队列size()empty()clear()front()/back()push_back()/pop_back()push_front()/pop_front()begin()/end()
set, map, multiset, multimap, 基于平衡二叉树(红黑树),动态维护有序序列size()empty()clear()begin()/end()++, -- 返回前驱和后继,时间复杂度 O(logn)set/multisetinsert()  插入一个数find()  查找一个数count()  返回某一个数的个数erase()(1) 输入是一个数x,删除所有x   O(k + logn)(2) 输入一个迭代器,删除这个迭代器lower_bound()/upper_bound()lower_bound(x)  返回大于等于x的最小的数的迭代器upper_bound(x)  返回大于x的最小的数的迭代器map/multimapinsert()  插入的数是一个pairerase()  输入的参数是pair或者迭代器find()注意multimap不支持此操作。 时间复杂度是 O(logn)lower_bound()/upper_bound()
unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表和上面类似,增删改查的时间复杂度是 O(1)不支持 lower_bound()/upper_bound(), 迭代器的++,--
bitset, 圧位bitset<10000> s;~, &, |, ^>>, <<==, !=count()  返回有多少个1any()  判断是否至少有一个1none()  判断是否全为0set()  把所有位置成1set(k, v)  将第k位变成vreset()  把所有位变成0flip()  等价于~flip(k) 把第k位取反

树与图的存储

树是一种特殊的图,与图的存储方式相同。

对于无向图中的边ab,存储两条有向边a->b, b->a。

因此我们可以只考虑有向图的存储。

(1) 邻接矩阵:g[a][b] 存储边a->b

(2) 邻接表:

// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;
// 添加一条边a->b
void add(int a, int b)
{e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
// 初始化
idx = 0;
memset(h, -1, sizeof h);

树与图的遍历
时间复杂度 O(n+m)
n表示点数,m表示边数
(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心

int dfs(int u)
{st[u] = true; // st[u] 表示点u已经被遍历过for (int i = h[u]; i != -1; i = ne[i]){int j = e[i];if (!st[j]) dfs(j);}
}

(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次

queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);while (q.size())
{int t = q.front();q.pop();for (int i = h[t]; i != -1; i = ne[i]){int j = e[i];if (!st[j]){st[j] = true; // 表示点j已经被遍历过q.push(j);}}
}

拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列
时间复杂度 O(n+m)
n表示点数,m表示边数

bool topsort()
{int hh = 0, tt = -1;// d[i] 存储点i的入度for (int i = 1; i <= n; i ++ )if (!d[i])q[ ++ tt] = i;while (hh <= tt){int t = q[hh ++ ];for (int i = h[t]; i != -1; i = ne[i]){int j = e[i];if (-- d[j] == 0)q[ ++ tt] = j;}}// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。return tt == n - 1;
}

朴素dijkstra算法 —— 模板题 AcWing 849. Dijkstra求最短路 I
时间复杂是 O(n2+m)
n表示点数,m表示边数

int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定
// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;for (int i = 0; i < n - 1; i ++ ){int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点for (int j = 1; j <= n; j ++ )if (!st[j] && (t == -1 || dist[t] > dist[j]))t = j;// 用t更新其他点的距离for (int j = 1; j <= n; j ++ )dist[j] = min(dist[j], dist[t] + g[t][j]);st[t] = true;}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}

堆优化版dijkstra —— 模板题 AcWing 850. Dijkstra求最短路 II
时间复杂度 O(mlogn)
n表示点数,m 表示边数

typedef pair<int, int> PII;
int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定
// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;priority_queue<PII, vector<PII>, greater<PII>> heap;heap.push({0, 1});      // first存储距离,second存储节点编号while (heap.size()){auto t = heap.top();heap.pop();int ver = t.second, distance = t.first;if (st[ver]) continue;st[ver] = true;for (int i = h[ver]; i != -1; i = ne[i]){int j = e[i];if (dist[j] > distance + w[i]){dist[j] = distance + w[i];heap.push({dist[j], j});}}}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}

Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路
时间复杂度 O(nm)

n表示点数,m表示边数
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{int a, b, w;
}edges[M];// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。for (int i = 0; i < n; i ++ ){for (int j = 0; j < m; j ++ ){int a = edges[j].a, b = edges[j].b, w = edges[j].w;if (dist[b] > dist[a] + w)dist[b] = dist[a] + w;}}if (dist[n] > 0x3f3f3f3f / 2) return -1;return dist[n];
}

spfa 算法(队列优化的Bellman-Ford算法) —— 模板题 AcWing 851. spfa求最短路
时间复杂度 平均情况下 O(m),最坏情况下 O(nm), n表示点数,m表示边数

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;queue<int> q;q.push(1);st[1] = true;while (q.size()){auto t = q.front();q.pop();st[t] = false;for (int i = h[t]; i != -1; i = ne[i]){int j = e[i];if (dist[j] > dist[t] + w[i]){dist[j] = dist[t] + w[i];if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入{q.push(j);st[j] = true;}}}}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}

spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环
时间复杂度是 O(nm), n表示点数,m表示边数

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中
// 如果存在负环,则返回true,否则返回false。
bool spfa()
{// 不需要初始化dist数组// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。queue<int> q;for (int i = 1; i <= n; i ++ ){q.push(i);st[i] = true;}while (q.size()){auto t = q.front();q.pop();st[t] = false;for (int i = h[t]; i != -1; i = ne[i]){int j = e[i];if (dist[j] > dist[t] + w[i]){dist[j] = dist[t] + w[i];cnt[j] = cnt[t] + 1;if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环if (!st[j]){q.push(j);st[j] = true;}}}}return false;
}

floyd算法 —— 模板题 AcWing 854. Floyd求最短路
时间复杂度是 O(n3)  n表示点数

初始化:
for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )if (i == j) d[i][j] = 0;else d[i][j] = INF;// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{for (int k = 1; k <= n; k ++ )for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

朴素版prim算法 —— 模板题 AcWing 858. Prim算法求最小生成树
时间复杂度是 O(n2+m), n表示点数,m表示边数

int n;      // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];     // 存储每个点是否已经在生成树中
// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{memset(dist, 0x3f, sizeof dist);int res = 0;for (int i = 0; i < n; i ++ ){int t = -1;for (int j = 1; j <= n; j ++ )if (!st[j] && (t == -1 || dist[t] > dist[j]))t = j;if (i && dist[t] == INF) return INF;if (i) res += dist[t];st[t] = true;for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);}return res;
}

Kruskal算法 —— 模板题 AcWing 859. Kruskal算法求最小生成树
时间复杂度是 O(mlogm), n表示点数,m表示边数

int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组
struct Edge     // 存储边
{int a, b, w;bool operator< (const Edge &W)const{return w < W.w;}
}edges[M];int find(int x)     // 并查集核心操作
{if (p[x] != x) p[x] = find(p[x]);return p[x];
}
int kruskal()
{sort(edges, edges + m);for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集int res = 0, cnt = 0;for (int i = 0; i < m; i ++ ){int a = edges[i].a, b = edges[i].b, w = edges[i].w;a = find(a), b = find(b);if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并{p[a] = b;res += w;cnt ++ ;}}if (cnt < n - 1) return INF;return res;
}

染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图
时间复杂度是 O(n+m), n表示点数,m表示边数

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色
// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{color[u] = c;for (int i = h[u]; i != -1; i = ne[i]){int j = e[i];if (color[j] == -1){if (!dfs(j, !c)) return false;}else if (color[j] == c) return false;}return true;
}
bool check()
{memset(color, -1, sizeof color);bool flag = true;for (int i = 1; i <= n; i ++ )if (color[i] == -1)if (!dfs(i, 0)){flag = false;break;}return flag;
}

匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配
时间复杂度是 O(nm), n表示点数,m表示边数

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过bool find(int x)
{for (int i = h[x]; i != -1; i = ne[i]){int j = e[i];if (!st[j]){st[j] = true;if (match[j] == 0 || find(match[j])){match[j] = x;return true;}}}return false;
}// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{memset(st, false, sizeof st);if (find(i)) res ++ ;
}

http://www.lryc.cn/news/89418.html

相关文章:

  • 阿里云服务器最新优惠价格及最新收费标准(2023更新)
  • React实现监听粘贴事件并获取粘贴板中的截图
  • ISO_IEC_7816-3
  • 学习C#反射(Reflection)
  • Spring Boot的核心组件和工作原理
  • 【指针的深刻理解】
  • lintcode-图的拓扑排序(java)
  • 【状态估计】基于随机方法优化PMU优化配置(Matlab代码实现)
  • Rinne Loves Graph
  • 第15章:索引的数据结构
  • 机械师曙光16电脑开机自动蓝屏怎么解决?
  • 机器学习_Lasso回归_ElasticNet回归_PolynomialFeatures算法介绍_02---人工智能工作笔记0037
  • 第五篇:强化学习基础之马尔科夫决策过程
  • Oracle面试题
  • 用Vue写教务系统学生管理
  • 专门用于管理企业与自己客户之间所有信息的客户管理系统
  • (转载)基于多层编码遗传算法的车间调度算法(matlab实现)
  • Redis的常用数据结构之哈希类型
  • 计算机组成原理-存储系统-缓存存储器(Cache)
  • 打开c语言生成exe文件,出现闪退的解决方法
  • 算法基础学习笔记——⑩DFS与BFS\树与图
  • chatgpt赋能python:Python中可迭代对象的介绍
  • 报表控件FastReport使用指南——如何打开WebP格式的图片
  • 【鲁棒、状态估计】用于电力系统动态状态估计的鲁棒迭代扩展卡尔曼滤波器研究(Matlab代码实现)
  • 整理6个超好用的在线编辑器!
  • ArcGIS10.8下载及安装教程(附安装步骤)
  • AI智能照片编辑:AI Photo for Mac
  • Tuxera for Mac2023中文版读写硬盘U盘工具
  • 项目遇到的实际需求: java从信任所有证书到对server证书进行校验
  • 使用JS来实现轮播图的效果