当前位置: 首页 > news >正文

python简单解析打印onnx模型信息

当我们加载了一个ONNX之后,我们获得的就是一个ModelProto,它包含了一些版本信息,生产者信息和一个GraphProto。在GraphProto里面又包含了四个repeated数组,它们分别是node(NodeProto类型),input(ValueInfoProto类型),output(ValueInfoProto类型)和initializer(TensorProto类型),其中node中存放了模型中所有的计算节点,input存放了模型的输入节点,output存放了模型中所有的输出节点,initializer存放了模型的所有权重参数

这里用python,将onnx中包含的有用的信息打印出来,进行一个直观可视化。

整体流程:

  • 解析graph input
  • 解析graph output
  • 解析graph initializer,模型的所有权重参数
  • 解析graph node,打印op信息,输入输出,得到整个计算的graph
import onnx
import numpy as np
import logging
logging.basicConfig(level=logging.INFO)def onnx_datatype_to_npType(data_type):if data_type == 1:return np.float32else:raise TypeError("don't support data type")def parser_initializer(initializer):name = initializer.namelogging.info(f"initializer name: {name}")dims = initializer.dimsshape = [x for x in dims]logging.info(f"initializer with shape:{shape}")dtype = initializer.data_typelogging.info(f"initializer with type: {onnx_datatype_to_npType(dtype)} ")# print tenth bufferweights = np.frombuffer(initializer.raw_data, dtype=onnx_datatype_to_npType(dtype))logging.info(f"initializer first 10 wights:{weights[:10]}")def parser_tensor(tensor, use='normal'):name = tensor.namelogging.info(f"{use} tensor name: {name}")data_type = tensor.type.tensor_type.elem_typelogging.info(f"{use} tensor data type: {data_type}")dims = tensor.type.tensor_type.shape.dimshape = []for i, dim in enumerate(dims):shape.append(dim.dim_value)logging.info(f"{use} tensor with shape:{shape} ")def parser_node(node):def attri_value(attri):if attri.type == 1:return attri.ielif attri.type == 7:return list(attri.ints)name = node.namelogging.info(f"node name:{name}")opType = node.op_typelogging.info(f"node op type:{opType}")inputs = list(node.input)logging.info(f"node with {len(inputs)} inputs:{inputs}")outputs = list(node.output)logging.info(f"node with {len(outputs)} outputs:{outputs}")attributes = node.attributefor attri in attributes:name = attri.namevalue = attri_value(attri)logging.info(f"{name} with value:{value}")def parser_info(onnx_model):ir_version = onnx_model.ir_versionproducer_name = onnx_model.producer_nameproducer_version = onnx_model.producer_versionfor info in [ir_version, producer_name, producer_version]:logging.info("onnx model with info:{}".format(info))def parser_inputs(onnx_graph):inputs = onnx_graph.inputfor input in inputs:parser_tensor(input, 'input')def parser_outputs(onnx_graph):outputs = onnx_graph.outputfor output in outputs:parser_tensor(output, 'output')def parser_graph_initializers(onnx_graph):initializers = onnx_graph.initializerfor initializer in initializers:parser_initializer(initializer)def parser_graph_nodes(onnx_graph):nodes = onnx_graph.nodefor node in nodes:parser_node(node)t = 1def onnx_parser():model_path = 'D:/project/public/yolov5-5.0/yolov5s-sim.onnx'model = onnx.load(model_path)# 0.parser_info(model)graph = model.graph# 1.parser_inputs(graph)# 2. parser_outputs(graph)# 3.parser_graph_initializers(graph)# 4. parser_graph_nodes(graph)if __name__ == '__main__':onnx_parser()
INFO:root:onnx model with info:7
INFO:root:onnx model with info:pytorch
INFO:root:onnx model with info:1.10
INFO:root:input tensor name: images
INFO:root:input tensor data type: 1
INFO:root:input tensor with shape:[1, 3, 640, 640]
INFO:root:output tensor name: output
INFO:root:output tensor data type: 1
INFO:root:output tensor with shape:[1, 3, 80, 80, 85]
INFO:root:output tensor name: 405
INFO:root:output tensor data type: 1
INFO:root:output tensor with shape:[1, 3, 40, 40, 85]
INFO:root:output tensor name: 419
INFO:root:output tensor data type: 1
INFO:root:output tensor with shape:[1, 3, 20, 20, 85]
INFO:root:initializer name: model.0.conv.conv.weight
INFO:root:initializer with shape:[32, 12, 3, 3]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.2730072  -1.4410826  -1.187087   -0.31312177 -0.94754034 -0.7239634    0.4315643   2.0547783   1.5080036   0.04422583]
INFO:root:initializer name: model.0.conv.conv.bias
INFO:root:initializer with shape:[32]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 1.4819448  -0.9827409  -0.7623507  -0.503065   -0.1677513   3.1156974    1.4849529   0.15412715 -0.4954783   2.8073668 ]
INFO:root:initializer name: model.1.conv.weight
INFO:root:initializer with shape:[64, 32, 3, 3]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.0130239  -0.00788062  0.0033419  -0.08140857 -0.1592819  -0.10095055   -0.01685373 -0.00378994 -0.01589627  0.01994706]
INFO:root:initializer name: model.1.conv.bias
INFO:root:initializer with shape:[64]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 2.9810083   1.6583345   2.4536395   4.068509   -0.03429741 -0.2963567    1.7936802   0.32334638  2.3112206   0.9088864 ]
INFO:root:initializer name: model.2.cv1.conv.weight
INFO:root:initializer with shape:[32, 64, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.00402472 -0.02254777  0.01670638  0.07000323 -0.01463853 -0.01208      -0.00047498 -0.01327164  0.02764146  0.03544556]
...
...
...
INFO:root:initializer name: model.23.cv2.conv.bias
INFO:root:initializer with shape:[256]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.33130765  0.50842535  0.04622685  0.27884385  0.35381323 -0.05325952   0.18430158  0.16491716 -0.4574555   0.21860392]
INFO:root:initializer name: model.23.cv3.conv.weight
INFO:root:initializer with shape:[512, 512, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.15170689 -0.05846716 -0.03708049 -0.00515915  0.04973555 -0.01793442   0.26971823 -0.08900855 -0.08623905 -0.01718434]
INFO:root:initializer name: model.23.cv3.conv.bias
INFO:root:initializer with shape:[512]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.07636432 -0.14711903 -0.1693097   1.2009852   0.00255883  1.4637253-0.29597348  2.088275    0.5806205   0.49393153]
INFO:root:initializer name: model.23.m.0.cv1.conv.weight
INFO:root:initializer with shape:[256, 256, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 1.8370461e-01 -3.6310073e-02  2.6413003e-02 -3.4686580e-02-4.4441203e-04  3.3812389e-02 -3.7558913e-02 -9.6223257e-02-5.3294320e-02 -5.8845425e-01]
INFO:root:initializer name: model.23.m.0.cv1.conv.bias
INFO:root:initializer with shape:[256]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.4050864  -0.03902826  0.31003702  
INFO:root:initializer name: model.24.m.0.bias
INFO:root:initializer with shape:[255]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.13708496  0.06561279  0.81152344  0.62353516 -4.1992188  -1.0546875    -5.2734375  -3.4414062  -5.5234375  -5.71875   ]
INFO:root:initializer name: model.24.m.1.weight
INFO:root:initializer with shape:[255, 256, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.00010455 -0.00139713  0.00134754  0.01174927 -0.00017703 -0.00750351-0.00029159 -0.00182247 -0.02702332  0.04980469]
INFO:root:initializer name: model.24.m.1.bias
INFO:root:initializer with shape:[255]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.05148315 -0.05493164  0.6333008   0.05197144 -2.625      -1.3398438    -5.7851562  -4.765625   -5.7929688  -6.2773438 ]
INFO:root:initializer name: model.24.m.2.weight
INFO:root:initializer with shape:[255, 512, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-2.5444031e-03 -1.1138916e-01  9.1195107e-06  1.0973215e-04-1.5907288e-03 -3.3130646e-03  2.6941299e-04 -9.5486641e-051.4615059e-04 -7.8857422e-02]
INFO:root:initializer name: model.24.m.2.bias
INFO:root:initializer with shape:[255]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-1.6265869e-02 -1.9702911e-03 -6.9091797e-02  1.9494629e-01-2.0878906e+00 -1.6210938e+00 -6.5625000e+00 -5.4531250e+00-6.3437500e+00 -6.7070312e+00]
INFO:root:initializer name: 420
INFO:root:initializer with shape:[4]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[1. 1. 2. 2.]
http://www.lryc.cn/news/8811.html

相关文章:

  • UE4 编写着色器以及各种宏的理解
  • 小笔记:Python 使用字符串调用函数
  • 红黑树的原理+实现
  • 用于非线性时间序列预测的稀疏局部线性和邻域嵌入(Matlab代码实现)
  • 使用 Vue3 重构 Vue2 项目
  • Hive学习——单机版Hive的安装
  • uprobe 实战
  • 华为OD机试 - 求最大数字(Python)| 真题+思路+考点+代码+岗位
  • 雨水情测报与大坝安全监测系统
  • 抖音广告投放形式有哪些?新品牌进入抖音怎么建立口碑
  • Beefxss使用教程图文教程(超详细)
  • 【Python学习笔记】35.Python3 CGI编程(2)
  • 博客等级说明
  • STL——容器适配器、deque
  • VBA数组和Excel工作表数据传递
  • PyQt5保姆级入门教程——从安装到使用
  • 1.6 epoll实战使用
  • JDK定时、Spring定时、时间轮定时小结
  • 关于cFosSpeed如何配置
  • YOLOV5输出的txt里面有什么猫腻(用于图像分类竞赛中提升图像信息密度)
  • vue+axios常用操作
  • Xshell连接阿里云服务器搭建网站
  • 嵌入式ARM设计编程(三) 处理器工作模式
  • jenkins构建报错:.java:16: error: package javafx.util does not exist
  • 【第三天】策略模式
  • 以应用为导向,看声纹识别中的音频伪造问题
  • RocketMQ源码分析之CommitLog消息存储机制
  • 亿级高并发电商项目-- 实战篇 --万达商城项目 九(广告服务、安装Redis优化用户缓存、广告服务实现类等开发)
  • FreeMarker生成word文档,固定word模板
  • 前端必学的CSS制作Switch动画开关按钮演示