当前位置: 首页 > news >正文

【动态规划】背包问题题型及方法归纳

背包问题的种类

背包问题是在规定背包容量为j的前提下,每个物品对应的体积为v[i],价值为w[i],从物品0到物品i中选择物品放入背包中,找出符合某种要求的价值

(1)背包问题种类

  • 01背包:每种物品只能选择1个。
  • 完全背包:每种物品可以选择无限个。
  • 多重背包:每种物品最多可选s[i]个。
  • 分组背包:有若干个组,每组内有若干个物品,每个物品只能选一次。

(2)递推公式

  • 01背包:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])
  • 完全背包:dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])
  • 多重背包:dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i], dp[i - 1][j - 2 * v[i]] + w[i] + ... + dp[i - 1][j - s[i] * v[i]] + s[i] * w[i])
  • 分组背包:dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i][k] + w[i][k], + ... + dp[i - 1][j - s[i]*v[i][k]] + s[i] * w[i][k])

(3)滚动数组遍历顺序:
遵循原则:用到上一层的信息i-1,则从大到小遍历;用到本层的信息i,则从小到大遍历。

  • 01背包:从大到小
  • 完全背包:从小到大
  • 多重背包:在01背包的基础上,用到i-1层信息,从大到小,多一层for循环选物品个数
  • 分组背包:在01背包的基础上,用到i-1层信息,从大到小,多一层for循环选物品个数

1、01背包问题

主要分为两部分:状态表示状态计算

1. 状态表示dp[i][j]
i是物品个数,j是条件限制。状态表示一般从两个角度考虑,分别为集合属性
其中,集合是只考虑前i个物品,不超过j的选法集合。属性值的是数量最大值最小值等。当要求的数到达某一个值时,就要求j - v[i]到达那个相应的值时,会更新,这就要求设置好初始值,一般会让dp[i][0]=0dp[i][0]=1

2. 状态计算
状态计算主要是集合划分,分为 f(i-1, j) 所有不选第i个物品的方案所有选择第i个物品的方案,这种方式可保证不遗漏和不重复

(1)不超过j的条件下,对于所有不选第i个物品的方案
因为是对i从0开始按顺序遍历,因此选择的是从0-i-1中的选择方案。

(2)不超过j的条件下,所有选择第i个物品的方案
此集合包含两个部分,一个是含有第i个物品,另一个是不含第i个物品从0-i-1中选择的方案。含有第i个物品时,表示的是物品i的体积v[i]为唯一的定量不含第i个物品时,条件就变为j - v[i],减去了第i个物品的体积,在此条件下,从0-i-1中选,此时会有多种方案,为变量。按我们的目标要求,如果要找最大值,就从多种方案中的一个最大值方案,如果要找最小值,就从多种方案中的最小值方案。两个部分相加,就是我们此方案的结果

在这里插入图片描述
dp[i][j]二维数组

#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 1010;
int dp[N][N];int main(){int n, m;int v[N], w[N];cin >> n >> m;for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i];for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {// 当前物品重量大于背包容量时,不放该物品if(j < v[i])        dp[i][j] = dp[i - 1][j];// 当前物品重量小于等于背包容量时,在放该物品后和不放该物品之间选择一个最大价值else                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);}}cout << dp[n][m] << endl;return 0;
}

dp[j]一维滚动数组
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])改为等价式dp[j] = max(dp[j], dp[j - v[i]] + w[i]),遍历顺序改变为从大到小,通常会初始化dp[0]=0dp[o]=1

#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 1010;
int dp[N];int main(){int n, m;int v[N], w[N];cin >> n >> m;for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i];for(int i = 1; i <= n; i++) {// 从后向前遍历,表示装入一个物品后,剩余的可装入容量达到的最大价值for(int j = m; j >= v[i]; j--) {dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}cout << dp[m] << endl;return 0;
}

151、【动态规划】leetcode ——2. 01背包问题(C++版本):二维数组+滚动数组

拓展应用:

  1. 152、【动态规划】leetcode ——416. 分割等和子集:滚动数组+二维数组(C++版本):将重量之和除以2,作为背包容量,找到能让背包中可装物体体积最大的装发,让背包中装入物品的重量等于背包容量。

  2. 153、【动态规划】leetcode ——416. 分割等和子集:滚动数组(C++版本):思路与上一题相同,分割成两个数量相近的集合,最后两个集合的综合相减。

  3. 154、【动态规划】leetcode ——494. 目标和:回溯法+动态规划(C++版本):分割成正数集合和负数集合,背包容量为正数集合大小,找到可组成正数集合大小的组合方式。

  4. 155、【动态规划】leetcode ——474. 一和零:三维数组+二维滚动数组(C++版本):字符串作为物品,0和1

2、完全背包问题

与01背包的区别在于同一个物品可以有无限个,对同一个物品可选择多次。

在这里插入图片描述

状态计算时,在dp[i][j]情况下 ,划分集合时01背包只能 划分成两个集合 ,而完全背包可以划分为多个集合(第i个物品选择0个、1个、2个…一直到体积达到或超过j为止的多种方案),其中选择0个时,就相当于在0-i-1中选择的方案dp[i - 1][j]。

递推公式表达式为:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i], dp[i - 1][j - 2*v[i]] + 2*w[i] + ... + dp[i - 1][j - n*v[i]] + n*w[i])(n*v[i]刚好小于等于j)

现在来进行简化,由上式可知,dp[i][j - v[i]] = max(dp[i - 1][j - v[i]], dp[i - 1][j - 2*v[i]] + w[i] + ... + dp[i - 1][j - n*v[i]] + (n-1)*w[i]),对该式两端加上一个w再联立第一个式子,从而得最终简化式子:

dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])

dp[i][j]二维数组

#include <iostream>using namespace std;const int N = 1010;
int dp[N][N];
int v[N], w[N];
int n, m;int main(){cin >> n >> m;for(int i = 1; i <= n; i++)      cin >> v[i] >> w[i];for(int i = 1; i <= n; i++) {for(int j = 1;j <= m; j++) {if(v[i] > j)        dp[i][j] = dp[i - 1][j];else                dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i]);}}cout << dp[n][m] << endl;return 0;
}

d[j]一维滚动数组
滚动数组的遍历顺序按照从小到大遍历。

#include <iostream>using namespace std;const int N = 1010;
int dp[N];
int v[N], w[N];
int n, m;int main(){cin >> n >> m;for(int i = 1; i <= n; i++)      cin >> v[i] >> w[i];for(int i = 1; i <= n; i++) {for(int j = v[i]; j <= m; j++) {// dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}cout << dp[m] << endl;return 0;}

156、【动态规划】AcWing ——3. 完全背包问题:二维数组+一维滚动数组(C++版本)

拓展应用:

无顺序要求的题目:

  1. 159、【动态规划】leetcode ——322. 零钱兑换:二维数组+一维滚动数组(C++版本):注意求最小值的初始化,由于不考虑顺序问题,因此遍历顺序都可以,dp[i][j] = min(dp[i - 1][j], dp[i][j - coins[i]])。

  2. 160、【动态规划】leetcode ——279. 完全平方数:二维数组+一维滚动数组(C++版本):方式同上,递推公式用上完全平方数形式,dp[i][j] = min(dp[i - 1][j], dp[i][j - i * i] + 1)。

(1)组合问题

组合问题遍历顺序按先背包,再物品遍历

  1. 158、【动态规划】leetcode ——518. 零钱兑换 II:二维数组+一维滚动数组(C++版本):零钱可以多次使用不考虑数字顺序位置关系,累加计算dp[i][j] = dp[i - 1][j] + dp[i][j - v[i]]。

(2)排列问题

排列问题遍历顺序按先物品,再背包遍历

  1. 158、【动态规划】leetcode ——377. 组合总和 Ⅳ(C++版本):数字可以多次使用考虑数字顺序位置关系,一维滚动数组累加计算dp[j] += dp[j - v[i]],二维比较特别sum(dp[i][j], dp[i][j - nums[k]),内层需要从0-i再遍历一次。

  2. 145、【动态规划】leetcode ——70. 爬楼梯:暴力法+动态规划(C++版本):完全背包解法与题2相同,也是排列问题。

  3. 161、【动态规划】leetcode ——139. 单词拆分:回溯法+动态规划(C++版本):这个题比较奇特一些,当满足前面的字符可以被组成并且当前单词可以有字典中组成时,为dp[j] = true

3、多重背包问题

多重背包是对每种物品的数量进行限制,dp[i][j]的意思:在第i种物品的个数为规定s[i]个的前提下,背包容量为j,物品体积为v[i],从物品0到物品i中选择物品,可达到的最大价值。

实现方式是在01背包实现的基础上,遍历时候,在最内层设置一个for循环,寻找从一个都不选到选s[i]个第i个物品时,哪种情况取得最大价值。

dp[i][j]二维数组

#include <iostream>
#include <algorithm>using namespace std;const int N = 110;int n, m;
int dp[N][N];
int v[N], w[N], s[N];int main() {cin >> n >> m;for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i] >> s[i];for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {// 一个都不选一直到选s[i]个,选择一种最大价值情况for(int k = 1; k <= s[i] && j >= k * v[i] ; k++) {dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - k * v[i]] + k * w[i]);}}}cout << dp[n][m] << endl;return 0;}

d[j]一维滚动数组

#include <iostream>
#include <algorithm>using namespace std;const int N = 110;int n, m;
int dp[N];
int v[N], w[N], s[N];int main() {cin >> n >> m;for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i] >> s[i];dp[0] = 0;for(int i = 1; i <= n; i++) {for(int j = m; j >= 0; j--) {// 一个都不选一直到选s[i]个,选择一种最大价值情况for(int k = 0; k <= s[i] && j >= k * v[i] ; k++) {dp[j] = max(dp[j], dp[j - k * v[i]] + k * w[i]);}}}cout << dp[m] << endl;return 0;}

162、【动态规划】AcWing ——4. 多重背包问题 I(C++版本)

4、分组背包

分组背包问题是在01背包的基础上,多了一个组的概念。有若干个组,每组里面有若干个物品,每个物品只能选择一次,找到在背包容量为j的前提下,从0-i组中选择物品,达到背包里价值最大。

d[j]一维滚动数组

#include <iostream>
#include <algorithm>using namespace std;const int N = 110;
int n, m;
int v[N][N], w[N][N], s[N];
int dp[N];int main() {cin >> n >> m;for(int i = 1; i <= n; i++) {cin >> s[i];for(int j = 0; j < s[i]; j++) {cin >> v[i][j] >> w[i][j];}}for(int i = 1; i <= n; i++) {                   // 遍历物品for(int j = m; j >= 1; j--) {               // 从大到小,遍历背包(使用i-1层信息)for(int k = 0; k < s[i]; k++) {         // 遍历每组内的物品个数if(j >= v[i][k]) {dp[j] = max(dp[j], dp[j - v[i][k]] + w[i][k]);}}}}cout << dp[m] << endl;return 0;
}

166、【动态规划】AcWing ——9. 分组背包问题(C++版本)

http://www.lryc.cn/news/8754.html

相关文章:

  • 全球十大资质正规外汇期货平台排行榜(最新版汇总)
  • 使用Paramiko时遇到的一些问题
  • 数据预处理(无量纲化、缺失值、分类特征、连续特征)
  • 【C#基础】C# 运算符总结
  • 存储性能软件加速库(SPDK)
  • 微服务(五)—— 服务注册中心Consul
  • 冷冻电镜 - ChimeraX Density Map 密度图 操作
  • Matlab 点云旋转之轴角式
  • 2023美赛数学建模资料思路模型
  • Nginx配置HTTP强制跳转到HTTPS
  • 从实现到原理,聊聊Java中的SPI动态扩展
  • 3、MySQL字符集
  • 大漠插件最新中文易语言模块7.2302
  • 极客大挑战 2021
  • C#开发的OpenRA加载文件的管理
  • SSM实现文件上传
  • OPENCV计算机视觉开发实践-图像的基本概念
  • Android 9.0 ResolverActivity.java多个app选择界面去掉始终保留仅有一次
  • 【算法 | 例题简答】相关例题讲解
  • 浅谈AQS
  • 关于服务连接器(Servlet)你了解多少?
  • 面对学员的投诉,中创教育是如何处理的?
  • 算法问题——排序算法问题
  • ArcGIS网络分析之构建网络分析数据集(一)
  • 微电影的行业痛点有哪些?
  • spark3.0源码分析-driver-executor心跳机制
  • 数据分析就要选择这款免费报表工具
  • node学习-3:服务器渲染和客户端渲染
  • LeetCode刷题笔记和周赛题解总目录
  • 用类比方式学习编程中函数递归(个人理解仅供参考)(内含汉诺塔问题的求解)