当前位置: 首页 > news >正文

「Codeforces」D. Infinite Set

D. Infinite Set

https://codeforces.com/contest/1635/problem/D

题目描述

你有一个由不同正整数组成的数组和一个无限集 S,现在你需要往集合 S 中塞入所有符合 x x x 条件的数。

x x x 的条件(满足其中任意一个即可):

  1. x = a i ( 1 ≤ i ≤ n ) x = a_i(1\leq i\leq n) x=ai(1in)
  2. x = 2 y + 1 ( y ∈ S ) x = 2y + 1 (y \in S) x=2y+1(yS) y y y 必须在 S 集合中)
  3. x = 4 y ( y ∈ S ) x = 4y (y \in S) x=4y(yS) ($y $ 必须在 S 集合中)

求无限集 S 中所有小于 2 p 2^p 2p 的个数。

输入描述

第一行包含两个整数 n 和 p (1≤n,p≤2⋅105)。

第二行包含 n 个整数 a1,a2,…,an (1≤ai≤109)。

保证 a 中的所有数字都是不同的。

输出描述

打印一个整数,即 S 中严格小于 2p 的元素数。 请记住以 109+7 为模打印。

样例

#1

2 4
6 1
9

#2

4 7
20 39 5 200
14

#3

2 200000
48763 1000000000
448201910

提示

在第一个示例中,小于 24 的元素是 {1,3,4,6,7,9,12,13,15}。

在第二个例子中,小于 27 的元素是 {5,11,20,23,39,41,44,47,79,80,83,89,92,95}。

解析

有一说一,二进制的题目我确实没写过…,一时间也只能想到暴力,可这样不可能过,后面看大佬题解,发现要用二进制…

**Tips:**以后但凡看到这种 2 p 2^p 2p 次幂的形式,要往二进制想想。

根据二进制, x x x 的第二和第三条件可以转为:

  1. 第一条件其实就是 A 数组的所有元素均属于 S
  2. 2 x + 1 2x+1 2x+1 相当于 2 < < 1 2 << 1 2<<1 然后加 1 1 1 (向后添加一个 1)
  3. 4 x 4x 4x 相当于 4 < < 2 4 << 2 4<<2 (向后添加两个 0)

题目要我们求 S 中所有小于 2 p 2^p 2p 的数,其实就是求对应的二进制最高位 1 的后面 0 的变化,例如 p = 3 p=3 p=3 时,对应二进制为 1000 1000 1000 ,我们可以得到且不保证符合的有 0000 、 0100 、 0110 、 0111 、 0010 、 0011 、 0001 0000、0100、0110、0111、0010、0011、0001 0000010001100111001000110001

通过上面的例子,我们发现,只是 1 后面的 0 发生了变化,而我们的规则是要么增加一个 1,要么增加两个0(这0是一起添加的,不能分开)。

我们假设一个数为 x x x ,那么我们可以得到:

x x x 增加位数得到的不同的数
0 x x x1
1 x 1 x1 x11
2 x 00 、 x 11 x00、x11 x00x112
3 x 001 、 x 100 、 x 111 x001、x100、x111 x001x100x1113
4 x 0000 、 x 1100 、 x 0011 、 x 1111 、 x 1001 x0000、x1100、x0011、x1111、x1001 x0000x1100x0011x1111x10015

上表意思:一个数的二进制在其后面增加若干位数,每次只能增加一个 1 或两个 0 ,那么最终得到的不同的数有多少个。

并且能发现,无论如何变化,它们都保证是唯一的。

看得出来这是个斐波那契数列 F [ i ] = F [ i − 1 ] + F [ i − 2 ] F[i] = F[i-1] + F[i-2] F[i]=F[i1]+F[i2] ,这里表示一个数增加 i i i 位可以得到的不同数的数量为 F [ i ] F[i] F[i] 个。

我们现在只是求了一个数增加若干位若得到的不同数,并没有将前面的也算进来,所以还需要对其做一个前缀和 p r e f i x [ i ] = p r e f i x [ i − 1 ] + F [ i ] prefix[i] = prefix[i-1] + F[i] prefix[i]=prefix[i1]+F[i] ,此时定义变为 p r e f i x [ i ] prefix[i] prefix[i] 表示增加 i i i 位后所得到的所有不同数。

最后需要注意若一个数 a i a_i ai 可以由另外一个数得到 a j a_j aj ,因此为了不重复计算,所以只保留 a i a_i ai ,例如 A 有 2, 8 两个元素,8 可以通过 2 得到,因此我们只保留 2 即可。

2:0010

8:1000

0010 可以通过一次变化(即在尾部加两个 0 )==> 001000 ==> 1000

AC Code

public class Main {static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));static StreamTokenizer st = new StreamTokenizer(br);static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));public static void main(String[] args) throws Exception {final int MOD = 1000000000 + 7;final int MAX = 200005;int n = nextInt(), p = nextInt(), ans = 0;int[] A = new int[MAX];int[] F = new int[MAX];int[] prefix = new int[MAX];F[0] = F[1] = 1;prefix[0] = 1; prefix[1] = 2;HashMap<Integer, Boolean> map = new HashMap<>();for(int i = 2; i < MAX; i++) {F[i] = (F[i-1] + F[i-2]) % MOD;prefix[i] = (prefix[i-1] + F[i]) % MOD;}for(int i = 1; i <= n; i++) {A[i] = nextInt();map.put(A[i], true);}// 对数组元素进行去重for(int i = 1; i <= n; i++) {int x = A[i];while(x != 0) {if(x % 2 == 1) x >>= 1; // 条件2,末尾加 1else if(x % 4 == 0) x >>= 2; // 条件3,末尾加两个 0else break;if(map.containsKey(x)) { // 判断 x 是否已经存在 S 中map.remove(A[i]); // 若存在,则表示 A[i] 可以通过其它元素得到,估抛弃该元素break;}}}Set<Integer> set = map.keySet();for(Integer x : set) {int bit = 32 - Integer.numberOfLeadingZeros(x); // 获取 x 二进制位数的前导零个数if(bit > p) continue;ans += prefix[p - bit];ans %= MOD;}System.out.println(ans);}public static int nextInt() throws Exception {st.nextToken();return (int) st.nval;}
}
http://www.lryc.cn/news/65406.html

相关文章:

  • 项目---基于TCP的高并发聊天系统
  • iOS热更新-8种实现方式
  • R语言 | 编写自己的函数
  • 【Java校招面试】基础知识(七)——数据库
  • MySQL高级--锁
  • Maven(六):Maven的使用——继承与聚合
  • Java ---System类
  • 代码随想录_贪心_leetcode 406 452
  • C++类的静态成员详解:成员函数非静态成员函数的非法调用
  • Qt之滑动条和进度条(QSlider、QProgressBar)
  • Flutter之插件开发plugin
  • asp.net基于web的音乐管理网站dzkf17A9程序
  • itop-3568开发板驱动学习笔记(25)设备树(四)GPIO 实例分析
  • 函数(定义、返回值、调用、参数)
  • 28. Kubernetes 核心组件讲解——API Server
  • springboot框架开发医院云HIS 住院医生站、住院护士站功能实现
  • 高性能定时器介绍及代码逐行解析--时间堆
  • 汇编语言学习笔记五
  • Linux下的epf 是什么?
  • 如何在广告形式选择上化解用户厌恶和变现瓶颈?
  • 【Android入门到项目实战-- 9.2】—— 传感器实战使用教程(靠近黑屏和计步器)
  • 软件项目生命周期模型
  • linux系统TP-ti,tsc2046外设调试
  • ChatGPT指令大全
  • 【Vue面试题】Vue2.x生命周期?
  • 运算放大器 - 笔记 02 -恒流源
  • Python:Python进阶:Python字符串驻留技术
  • 2022年 全国职业院校技能大赛(中职组)网络安全赛项 正式赛卷 A模块 做题记录
  • 华为OD机试 - 优选核酸检测点(Python)
  • windows怎么把包含某个关键词的文件移动到一个文件夹中