CF914G Sum the Fibonacci
CF914G Sum the Fibonacci
洛谷Sum the Fibonacci
题目大意
给你一个长度为 n n n的数组 s s s,定义五元组 ( a , b , c , d , e ) (a,b,c,d,e) (a,b,c,d,e)是合法的当且仅当:
- 1 ≤ a , b , c , d , e ≤ n 1\leq a,b,c,d,e\leq n 1≤a,b,c,d,e≤n
- ( s a ∣ s b ) & s c & ( s d ⊕ s e ) = 2 i , i ∈ Z (s_a|s_b)\& s_c\& (s_d\oplus s_e)=2^i,i\in Z (sa∣sb)&sc&(sd⊕se)=2i,i∈Z
- s a & s b = 0 s_a\& s_b=0 sa&sb=0
对于所有合法的五元组 ( a , b , c , d , e ) (a,b,c,d,e) (a,b,c,d,e),求 ∑ f ( s a ∣ s b ) × f ( s c ) × f ( s d ⊕ s e ) \sum f(s_a|s_b)\times f(s_c)\times f(s_d\oplus s_e) ∑f(sa∣sb)×f(sc)×f(sd⊕se)
f 0 = 0 , f 1 = 1 , f i = f i − 1 + f i − 2 ( i ≥ 2 ) f_0=0,f_1=1,f_i=f_{i-1}+f_{i-2}(i\geq 2) f0=0,f1=1,fi=fi−1+fi−2(i≥2)
输出答案对 1 0 9 + 7 10^9+7 109+7取模后的值。
1 ≤ n ≤ 1 0 6 , 0 ≤ s i < 2 17 1\leq n\leq 10^6,0\leq s_i<2^{17} 1≤n≤106,0≤si<217
题解
令 i = s a & s b , j = s c , k = s d ⊕ s e i=s_a\&s_b,j=s_c,k=s_d\oplus s_e i=sa&sb,j=sc,k=sd⊕se
题意即求
∑ p ∑ i & j & k = 2 p f i × f j × f k × ( ∑ s a ∣ s b = i , s a & s b = 0 1 ) × ( ∑ s c = j 1 ) × ( ∑ s d ⊕ s e = k 1 ) \sum\limits_p\sum\limits_{i\& j\& k=2^p}f_i\times f_j\times f_k\times (\sum\limits_{s_a|s_b=i,s_a\& s_b=0}1)\times (\sum\limits_{s_c=j}1)\times (\sum\limits_{s_d\oplus s_e=k}1) p∑i&j&k=2p∑fi×fj×fk×(sa∣sb=i,sa&sb=0∑1)×(sc=j∑1)×(sd⊕se=k∑1)
令 p i p_i pi表示 i i i在数组 s s s中出现的次数,那么
( ∑ s a ∣ s b = i , s a & s b = 0 1 ) = ∑ x ∣ y = i , x & y = 0 p x × p y (\sum\limits_{s_a|s_b=i,s_a\& s_b=0}1)=\sum\limits_{x|y=i,x\& y=0}p_x\times p_y (sa∣sb=i,sa&sb=0∑1)=x∣y=i,x&y=0∑px×py
( ∑ s c = j 1 ) = p j (\sum\limits_{s_c=j}1)=p_j (sc=j∑1)=pj
( ∑ s d ⊕ s e = k 1 ) = ∑ i ⊕ j = k p i × p j (\sum\limits_{s_d\oplus s_e=k}1)=\sum\limits_{i\oplus j=k}p_i\times p_j (sd⊕se=k∑1)=i⊕j=k∑pi×pj
第二个式子很好求。对于第一个式子和第三个式子,用 F W T FWT FWT的子集卷积和异或卷积,分别用 O ( m log 2 m ) , O ( m log m ) O(m\log^2 m),O(m\log m) O(mlog2m),O(mlogm)的时间复杂度求出,其中 m = 2 17 m=2^{17} m=217。
code
#include<bits/stdc++.h>
using namespace std;
int n,x,cnt[1<<17];
long long ans=0,f[1<<17],s[1<<17],t[20][1<<17],a[1<<17],b[1<<17],c[1<<17],v[1<<17];
const long long mod=1e9+7,ny2=5e8+4;
void pt(long long *w){for(int i=0;i<1<<17;i++) w[i]=s[i];
}
void fwt_or(long long *w,int fl){for(int s=2;s<=1<<17;s<<=1){int mid=s>>1;for(int v=0;v<1<<17;v+=s){for(int i=0;i<mid;i++){w[v+mid+i]=(w[v+mid+i]+fl*w[v+i]+mod)%mod;}}}
}
void fwt_and(long long *w,int fl){for(int s=2;s<=1<<17;s<<=1){int mid=s>>1;for(int v=0;v<1<<17;v+=s){for(int i=0;i<mid;i++){w[v+i]=(w[v+i]+fl*w[v+mid+i]+mod)%mod;}}}
}
void fwt_xor(long long *w,int fl){for(int s=2;s<=1<<17;s<<=1){int mid=s>>1;for(int v=0;v<1<<17;v+=s){for(int i=0;i<mid;i++){long long t1=w[v+i],t2=w[v+mid+i];w[v+i]=(t1+t2)%mod;w[v+mid+i]=(t1-t2+mod)%mod;if(fl==-1){w[v+i]=w[v+i]*ny2%mod;w[v+mid+i]=w[v+mid+i]*ny2%mod;}}}}
}
int main()
{scanf("%d",&n);for(int i=1;i<=n;i++){scanf("%d",&x);++s[x];}f[0]=0;f[1]=1;cnt[1]=1;for(int i=2;i<1<<17;i++){cnt[i]=cnt[i-(i&(-i))]+1;f[i]=(f[i-1]+f[i-2])%mod;}for(int i=0;i<1<<17;i++){t[cnt[i]][i]=s[i];}for(int i=0;i<=17;i++){fwt_or(t[i],1);}for(int i=0;i<=17;i++){for(int j=0;j<=i;j++){for(int k=0;k<1<<17;k++){v[k]=(v[k]+t[j][k]*t[i-j][k]%mod)%mod;}}fwt_or(v,-1);for(int j=0;j<(1<<17);j++){if(cnt[j]==i) a[j]=v[j];v[j]=0;}}pt(b);pt(c);fwt_xor(c,1);for(int i=0;i<1<<17;i++){c[i]=c[i]*c[i]%mod;}fwt_xor(c,-1);for(int i=0;i<1<<17;i++){a[i]=a[i]*f[i]%mod;b[i]=b[i]*f[i]%mod;c[i]=c[i]*f[i]%mod;}fwt_and(a,1);fwt_and(b,1);fwt_and(c,1);for(int i=0;i<1<<17;i++){v[i]=a[i]*b[i]%mod*c[i]%mod;}fwt_and(v,-1);for(int i=1;i<1<<17;i<<=1){ans=(ans+v[i])%mod;}printf("%lld",ans);return 0;
}