当前位置: 首页 > news >正文

[Daimayuan] 走不出的迷宫(C++,图论,DP)

有一个 H H H W W W 列的迷宫(行号从上到下是 1 − H 1−H 1H,列号从左到右是 1 − W 1−W 1W),现在有一个由 .# 组成的 HW 列的矩阵表示这个迷宫的构造,. 代表可以通过的空地,# 代表不能通过的墙。

现在有个人从 起点 ( 1 , 1 ) (1,1) (1,1) 开始走,他每一步只能往右走一格或者往下走一格,并且他不能跨越迷宫的边界。他会一直走,直到没有可以走的路时停下来。

请问这个人最多可以经过多少个格子?

输入格式

第一行两个整数 H H H W W W,表示迷宫有 H H H W W W 列。

接下来一个 H H H W W W 列的由 .# 组成的矩阵,表示迷宫的构造。

注意:保证 ( 1 , 1 ) (1,1) (1,1) 的位置一定是 .

输出格式

一个整数,表示最多步数。

样例输入1

3 4
.#..
..#.
..##

样例输出1

4

样例输入2

1 1
.

样例输出2

1

样例输入3

5 5
.....
.....
.....
.....
.....

样例输出3

9

数据规模

对于全部数据保证 1 ≤ H , W ≤ 100 1≤H,W≤100 1H,W100

解题思路

主体思路为动态规划,时间复杂度为 O ( H ∗ W ) O(H*W) O(HW)

由题意可知,我们到达一个格子的方式只有从左边和上边到达两种情况,那么我们就继承这两种情况中步数更多的一种 + 1 +1 +1来更新:

sum[i][j] = max(sum[i - 1][j], sum[i][j - 1]) + 1;

采用二重循环遍历整张图,由循环顺序,显而易见:在我们到达(i, j)之前,已经到达了(i - 1, j)(i, j - 1)

for (int i = 1; i <= h; i++) {for (int j = 1; j <= w; j++) {sum[i][j] = max(sum[i - 1][j], sum[i][j - 1]) + 1;}
}

但是需要注意两点:

(1)注意障碍物的存在,以下代码采用的方式是掩码把墙的sum置为 0 0 0

(2)注意寻找最大步数时还需要进行一次 B F S BFS BFS,因为我们可能到达不了某些格子,从而导致我们得到的答案并不是sum数组中的最大值。

AC代码如下:

#include <iostream>
#include <queue>
using namespace std;
const int max_h = 100;
const int max_w = 100;bool map[max_h + 1][max_w + 1], book[max_h][max_w];
long long sum[max_h + 1][max_w + 1];
long long h, w, ans = 1;
struct node { int x, y; };
queue<node>q;inline void read() {string str;cin >> h >> w;for (int i = 1; i <= h; i++) {cin >> str;for (int j = 1; j <= w; j++) {if (str[j - 1] == '.') map[i][j] = true;else map[i][j] = false;}}
}void bfs() {q.push(node{ 1,1 });book[1][1] = true;int step[2][2] = { {1,0}, {0,1} }, temp_x, temp_y;while (!q.empty()) {node temp = q.front(); q.pop();for (int i = 0; i < 2; i++) {temp_x = step[i][0] + temp.x;temp_y = step[i][1] + temp.y;if (temp_x > h || temp_y > w) continue;if (!map[temp_x][temp_y]) continue;if (book[temp_x][temp_y]) continue;q.push(node{ temp_x,temp_y });book[temp_x][temp_y] = true;ans = max(ans, sum[temp_x][temp_y]);}}
}inline void solve() {for (int i = 1; i <= h; i++) {for (int j = 1; j <= h; j++) {sum[i][j] = max(sum[i - 1][j] * map[i - 1][j],sum[i][j - 1] * map[i][j - 1]) + 1;}}bfs();cout << ans << endl;
}int main() {read();solve();return 0;
}
http://www.lryc.cn/news/62488.html

相关文章:

  • 【LeetCode: 1416. 恢复数组 | 暴力递归=>记忆化搜索=>动态规划 】
  • centos7查看磁盘io
  • 浅析低代码开发的典型应用构建场景v
  • 3 连续模块(二)
  • ElasticSearch 部署及安装ik分词器
  • 汽车充电桩检测设备TK4860C交流充电桩检定装置
  • 备份和恢复:确保数据安全
  • 8 DWA(一)
  • mysql慢查询日志
  • Sentinel介绍及搭建
  • 最受信任的低代码平台排行榜
  • Django框架之创建项目、应用并配置数据库
  • 软件测试之基础概念学习篇(需求 + 测试用例 + 开发模型 + 测试模型 + BUG)
  • Windows下版本控制器(SVN) - 1、开发中的实际问题+2、版本控制简介
  • Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head Synthesis 笔记
  • SpringBoot 项目整合 Redis 教程详解
  • 3ASC25H214 DATX130以力控制为基础的装配应用方面已经形成了一个解决方案
  • Java的位运算
  • FastDFS分布式文件存储
  • Android的AAC架构
  • 高功率激光切割中不良现象的排除技巧
  • MySQL-----复合查询
  • 10.Yarn概述
  • MFC实现背景透明,控件不透明的对话框,且点击图片有事件响应
  • 案例01-tlias智能学习辅助系统01-增删改查+参数传递
  • Spring之Bean的配置与实例
  • “不保留活动”打开,导致app返回前台崩溃问题解决
  • 解读vue3源码(3)——watch
  • 优秀简历的HR视角:怎样打造一份称心如意的简历?
  • 系统集成项目管理工程师——考试重点(三)项目管理一般知识