当前位置: 首页 > news >正文

吴恩达 Machine Learning(Class 1)

Week 1

1.1 Supervised learning

  • 监督学习
  • 本质:学习输入、输出,或 x -> y 的映射;

Regression

  • 回归算法:房价预测;

Classification

  • 分类算法:肿瘤预测;

1.2 Unsupervised learning

Clustering

  • 无监督学习
  • 本质:从输入数据中发现潜在的结构或模式,而不是根据已知的答案进行预测;
  • 聚类:谷歌新闻,DNA序列,人群分组;

Anomaly Detection

  • 异常检测(Anomaly Detection):识别数据中不符合预期模式的异常点,常用于网络安全、欺诈检测等领域。

Dimensionality Reduction

  • 降维(Dimensionality Reduction):通过减少数据中的特征数量,提取出最重要的信息。

1.3 Linear Regression

House size and price

  • 回归预测的结果有无数个,而分类的结果有限;

  • 几个术语:

  • 构造线性模型:这里为单变量;

Cost function

  • 这里除以2只是为了求导计算方便;

  • 单变量线性模型损失函数:

Gradient descent

  • 双变量线性模型损失函数:

  • 参数的更新:

Learning rate

Week 2

2.1 Multiple Linear Regression

  • 多元线性回归:多个输入变量影响

Vectorization

  • 向量运算更快的原理:并行计算;

  • 多元参数更新:

Normal equation

  • 正规方程:只运用于线性回归模型,求解损失函数最小值的 w 和 b,无需迭代;

2.2 Featrue scaling

  • 特征缩放:使梯度下降运行的更快;
  • 方法:将不同特征的取值范围调整到合适大小;

Mean normalization

Z-score normalization

  • 就是概率论中的正态分布;

How to choose Alpha

  • 学习率太大会产生波动,太小会导致迭代次数增加;

  • 怎么调节学习率:

2.3 Featrue Engineering

How to choose featrue

  • 通过选择原始特征去组合出新的特征进行拟合:

Polynomial Regression

  • 多项式回归:通过使用特征工程和多项式函数,得到更好的模型;

Week 3

3.1 Logistic Regression

Sigmoid function

Decision Boundary

  • 决策边界:可以是线性,也可以是非线性;

Logistic loss function

  • 经过 logistic 转化后的结果处于 0 - 1 之间,在这个区间内 log 函数单调,且取值为 0 - ∞;

  • 简化的损失函数:是一个凸函数

Gradient descent

  • 和线性回归中梯度下降的不同点,就是 y_pred 不一样了,增加了 logistic 变换;

3.2 Underfitting and Overfitting

  • 欠拟合和过拟合:线性模型和分类模型中均有出现;

Address Overfitting

  • 法一:Collect more data,收集更多的数据

  • 法二:Select featrues,选择和使用特征的一个子集

  • 法三:Regularization(正则化),减小参数大小;通常是改变 Wi 的大小,而不改变 b;

3.3 Regularization

  • 增加了 \lambda 这个参数,为了降低损失函数,需要调节它的值,可以起到减小参数的作用;

Regularized linear regression

  • 正则化线性回归中的梯度下降:

  • 原理:每次迭代 Wj 都乘一个略小于 1 的数,用于缩小参数;

Regularized logistic regression

http://www.lryc.cn/news/624923.html

相关文章:

  • cross-env 与 @nestjs/config 的对比分析
  • 小杰机械视觉(one day)——基础阶段结束,进入机械学习阶段。
  • leetcode43. 字符串相乘
  • TEST_
  • 10CL016YF484C8G Altera FPGA Cyclone
  • 视觉语言导航(8)——任务驱动的架构增强 3.3
  • 矿物分类案例(二)数据填充后使用6种模型训练
  • Android中flavor的使用
  • PostgreSQL中的json_agg()
  • 初始向量数据库之Milvus
  • milvus如何存储特殊类型的数据
  • Milvus向量数据库安装步骤
  • 大厂 | 华为半导体业务部2026届秋招启动
  • 【大模型】RAG
  • 基于nvm安装管理多个node.js版本切换使用(附上详细安装使用图文教程+nvm命令大全)
  • ANSI终端色彩控制知识散播(I):语法封装(Python)——《彩色终端》诗评
  • 楼宇自控系统深化设计需关注哪些核心要点?技术与应用解析
  • 第一阶段C#-14:委托,事件
  • ReactNative开发实战——React Native开发环境配置指南
  • 机器翻译论文阅读方法:顶会(ACL、EMNLP)论文解析技巧
  • ADC的实现(单通道,多通道,DMA)
  • 如何编写自己的Spring容器
  • 【EI会议征稿】2025第四届健康大数据与智能医疗国际会议(ICHIH 2025)
  • VS Code Copilot 完整使用教程(含图解)
  • 全局锁应用场景理解
  • 深度学习——R-CNN及其变体
  • 04 类型别名type + 检测数据类型(typeof+instanceof) + 空安全+剩余和展开(运算符 ...)简单类型和复杂类型 + 模块化
  • Spark 运行流程核心组件(三)任务执行
  • 实习两个月总结
  • [系统架构设计师]软件架构的演化与维护(十)