C++list(2)
2.list的模拟实现
2.1 模拟实现list
要模拟实现list,必须要熟悉list的底层结构以及其接口的含义,通过上面的学习,这些内容已基本掌握,现在我们来模拟实现list。
list的模拟实现
2.2 list的反向迭代器
通过前面例子知道,反向迭代器的++就是正向迭代器的–,反向迭代器的–就是正向迭代器的++, 因此反向迭代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对 正向迭代器的接口进行包装即可。
template<class Iterator>
class ReverseListIterator
{// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的类型,而不是静态成员变量// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
public:typedef typename Iterator::Ref Ref;typedef typename Iterator::Ptr Ptr;typedef ReverseListIterator<Iterator> Self;
public://////////////////////////////////////////////// 构造ReverseListIterator(Iterator it) : _it(it) {}//////////////////////////////////////////////// 具有指针类似行为Ref operator*() {Iterator temp(_it);--temp;return *temp;}Ptr operator->() { return &(operator*()); }//////////////////////////////////////////////// 迭代器支持移动Self& operator++() {--_it;return *this;}Self operator++(int) {Self temp(*this);--_it;return temp;}Self& operator--() {++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}//////////////////////////////////////////////// 迭代器支持比较bool operator!=(const Self& l)const { return _it != l._it; }bool operator==(const Self& l)const { return _it != l._it; }Iterator _it;
};
3.list与vector的对比
vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及 应用场景不同,其主要不同如下:
vector | list | |
---|---|---|
底层结构 | 动态顺序表,一段连续空间 | 带头结点的双向循环链表 |
随机访问 | 支持随机访问,访问某个元素效率O(1) | 不支持随机访问,访问某个元 素效率O(N) |
插入和删除 | 任意位置插入和删除效率低,需要搬移元素,时间 复杂度为O(N),插入时有可能需要增容,增容: 开辟新空间,拷贝元素,释放旧空间,导致效率更低 | 任意位置插入和删除效率高, 不需要搬移元素,时间复杂度 为O(1) |
空间 利用率 | 底层为连续空间,不容易造成内存碎片,空间利用 率高,缓存利用率高 | 底层节点动态开辟,小节点容 易造成内存碎片,空间利用率低,缓存利用率低 |
迭代 器 | 原生态指针 | 对原生态指针(节点指针)进行 封装 |
迭代器失效 | 在插入元素时,要给所有的迭代器重新赋值,因为 插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失 效 | 插入元素不会导致迭代器失 效,删除元素时,只会导致当 前迭代器失效,其他迭代器不 受影响 |
使用场景 | 需要高效存储,支持随机访问,不关心插入删除效率 | 大量插入和删除操作,不关心随机访问 |