当前位置: 首页 > news >正文

算法刷题|70.爬楼梯(进阶)、322.零钱兑换、279.完全平方数

爬楼梯(进阶)

题目:假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

思路:本题也可以抽象成完全背包的问题,背包就是总共多少阶台阶,物品就是每次可以爬多少楼梯,可以爬1阶也可以爬2阶,和顺序有关系,所有是完全背包

  • dp[i]的含义:爬i阶楼梯,总共有dp[i]种方法
  • 递推公式:dp[i] += dp[i-j]
  • dp初始化:dp[0] = 1
  • 遍历顺序:先遍历背包,后遍历物品
  • 打印dp数组
class Solution {public int climbStairs(int n) {// dp[i]表示:爬i阶台阶有dp[i]中方式int[] dp = new int[n+1];// 初始化dp[0] = 1;int[] weigth = {1,2};for(int i = 0;i<=n;i++){// 背包for(int j = 0;j<weigth.length;j++){// 物品if(i >= weigth[j]){dp[i] += dp[i-weigth[j]];}}}return dp[n];}
}

零钱兑换

题目:给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

  • dp[j]的含义:凑成金额为j,最少需要dp[j]个硬币
  • 递推公式:dp[j] = Math.min(dp[j],dp[j-coins[i]]+1)
    • dp[j]不放当前硬币,因为是一维数组,所有这里用的是上一次遍历的结果
    • dp[j-coins[i]]+1,放当前硬币;放了当前硬币,剩余的金额的最少硬币数+1(当前这个硬币)就是放当前硬币的最少硬币数
  • dp数组初始化:dp[j] = Integer_MAX_VALUE,dp[0] = 0,因为取的是最小值,所有就不能全部初始化成0了,因为dp[0] = 0,所有就会一种都是0
  • 遍历顺序:先遍历物品,后遍历背包
  • 打印dp数组
class Solution {public int coinChange(int[] coins, int amount) {// dp[i]表示:凑成金额为i,最少需要dp[i]个硬币int[] dp = new int[amount+1];Arrays.fill(dp,Integer.MAX_VALUE);dp[0] = 0;for(int i = 0;i<coins.length;i++){// 物品for(int j = coins[i];j<=amount;j++){// 背包if(dp[j-coins[i]] != Integer.MAX_VALUE){// 如果遇到初始值则跳过dp[j] = Math.min(dp[j],dp[j-coins[i]]+1);}}}return dp[amount] == Integer.MAX_VALUE ? -1 :dp[amount];}
}

完全平方数

题目:给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

思路:本题的物品就是1,4,9,16…等等完全平方数,背包就是n

  • dp[i]的含义:dp[i]个完全平方数和为i
  • 递推公式:dp[i] = Math.min(dp[i],dp[i-i*i]+1)
  • dp数组初始化:dp[i]=Integer.MAX_VALUE,dp[0]=0
  • 遍历顺序:先物品,后背包
  • 打印dp数组
class Solution {public int numSquares(int n) {// dp[i]表示整数i,dp[i]个完全平方数和为iint[] dp = new int[n+1];Arrays.fill(dp,Integer.MAX_VALUE);dp[0] = 0;for(int i = 1;i*i<=n;i++){// 物品for(int j = i*i;j<=n;j++){// 背包if(dp[j-i*i] != Integer.MAX_VALUE){dp[j] = Math.min(dp[j],dp[j-i*i]+1);}}}return dp[n] == Integer.MAX_VALUE ? -1 : dp[n];}
}
http://www.lryc.cn/news/61798.html

相关文章:

  • 【MCS-51】51单片机结构原理
  • 软件测试技术之如何编写测试用例(3)
  • 移远通信笔试题
  • python算法中的机器学习算法之监督学习知识点(详解)
  • Flink主要有两种基础类型的状态:keyed state
  • js录音支持h5 pc ios android
  • mybatis04-mybatis缓存、分页插件、注解开发(一对一、多对一、多对多)
  • 软件平台接口常见问题汇总
  • SparkStreaming学习之——无状态与有状态转化、遍历kafka的topic消息、WindowOperations
  • 上市公司碳排放测算数据(1992-2022年)
  • Springboot 整合 JPA 及 Swagger2
  • android aidl
  • MYSQL---主从同步概述与配置
  • WebClient学习
  • 「计算机控制系统」6. 直接设计法
  • 什么是JWT?
  • STM32—0.96寸OLED液晶显示
  • Mysql的简介和选择
  • 3D视觉之深度相机方案
  • Mysql列的完整性约束详解(主键约束)
  • 母婴市场竞争激烈,如何通过软文营销脱颖而出
  • java--线程池
  • asp.net765数码手机配件租赁系统
  • 有关态势感知(SA)的卷积思考
  • Docker快速部署springboot项目
  • Linux命令rsync增量同步目录下的文件
  • 项目管理---(1)项目管理一般知识
  • 超过50多个热门的免费可用 API 分享
  • 记一次死锁问题
  • Bean 作⽤域和⽣命周期