当前位置: 首页 > news >正文

有关态势感知(SA)的卷积思考

卷积是一种数学运算,其本质是将两个函数进行操作,其中一个函数是被称为卷积核或滤波器的小型矩阵,它在另一个函数上滑动并产生新的输出。在计算机视觉中,卷积通常用于图像处理和特征提取,它可以通过滤波器对输入图像进行卷积运算,并输出提取的特征图像,从而帮助计算机理解图像信息。因此,卷积的本质是一种信号处理技术,用于从输入信号中提取有用的信息。

态势感知(Situation Awareness,简称SA)是指通过收集和分析各种信息、数据和情报,以及实时监控和识别环境变化和风险,以获取对当前和未来局势的全面、准确的认识和理解,从而支持决策、规划、部署和应对等行动的一种能力。在军事、安全、应急管理、城市管理等领域,态势感知是非常重要的一项技术和能力。

我们把SA分成态、势、感、知四部分,并且把态、势分为一组,用来描述外部客体及情境变化,把感、知分为一组,用来描述主体内部变化,这样一来,就可分别对态-势组、感-知组进行卷积处理,以实现人机环境系统的深度态势感知,进而实现计算与算计融合的理论框架。

1、态与势的卷积

态与势的卷积运算可以表示为:f(x) =  g(x-x')h(x')

其中,g(x)表示态函数,h(x)表示势函数,f(x)表示态势函数。


在任务过程中,态函数描述客体的状态,而势函数描述客体在某个状态的势能。当客体在某一状态时,其态势函数的值等于该状态的所有势能和态函数的积分。

因此,态和势的卷积运算可以用来计算客体在不同状态的态势函数值。这个过程可以通过将势函数平移,然后用态函数乘以平移后的势函数,最后对所有平移后的函数进行积分来实现。

卷积运算的结果是一个新的函数f(x),它描述了客体在不同状态的态势函数值。这个函数可以用来预测客体在不同状态下的趋势变化分布。

2、感与知的卷积

感与知的卷积运算同样可以表示为:f(x) =  g(x-x')h(x')

其中,g(x)表示感函数,h(x)表示知函数,f(x)表示感知函数。


在任务过程中,感函数描述输入信息的状态,而知函数描述经验判断的。当输入信息在某一时刻时,其感知函数的值等于该时刻的所有感和知函数的积分。

因此,感和知的卷积运算可以用来计算输入信息在不同时刻的感知函数值。这个过程可以通过将知函数平移,然后用感函数乘以平移后的知函数,最后对所有平移后的函数进行积分来实现。

卷积运算的结果是一个新的函数f(x),它描述了输入信息在不同时刻的感知函数值。这个函数可以用来预测输入信息在不同时刻的关键特征变化情况。


47d1f39e4b0f6092cb93c2a9e5590f74.jpeg

b95cc71f429cd4a9cb6d686f5da70ef2.jpeg

3259d7445184252db8d91c1d55fd240a.jpeg

http://www.lryc.cn/news/61774.html

相关文章:

  • Docker快速部署springboot项目
  • Linux命令rsync增量同步目录下的文件
  • 项目管理---(1)项目管理一般知识
  • 超过50多个热门的免费可用 API 分享
  • 记一次死锁问题
  • Bean 作⽤域和⽣命周期
  • SVN通过备份、过滤、再导入的方式彻底删除废弃目录
  • golang支持优雅关闭和core错误记录
  • Basics of Container Isolation 容器隔离的实现原理
  • EBS R12.1 注册客户化应用的步骤
  • 算法记录 | Day38 动态规划
  • PMP项目管理-[第六章]进度管理
  • Python变量
  • 准备换工作的看过来~
  • 免费AI人工智能在线写作伪原创-百度ai自动写文章
  • 互联网摸鱼日报(2023-04-21)
  • 5.3、web服务器简介HTTP协议
  • 【观察】华为:新一代楼宇网络,使能绿建智慧化
  • 【C# .NET】chapter 13 使用多任务改进性能和可扩展性
  • CA(证书颁发机构)
  • 辛弃疾最有代表性的十首词
  • MC9S12G128开发板—实现按键发送CAN报文指示小车移动功能
  • 尚融宝22-提交借款申请
  • 机器学习在生态、环境经济学中的实践技术应用及论文写作
  • Android硬件通信之 WIFI通信
  • 面试官:“请描述一下Android系统的启动流程”
  • k8s delete node 后 重启kubelet会自己加入到集群 ?
  • REXROTH液压方向阀安装须知
  • 【数据结构实验】哈夫曼树
  • 浏览器不好用?插件来帮忙