当前位置: 首页 > news >正文

Python day37

@浙大疏锦行 python day37.

内容:

  • 保存模型只需要保存模型的参数即可,使用的时候直接构建模型再导入参数即可
# 保存模型参数
torch.save(model.state_dict(), "model_weights.pth")# 加载参数(需先定义模型结构)
model = MLP()  # 初始化与训练时相同的模型结构
model.load_state_dict(torch.load("model_weights.pth"))
# model.eval()  # 切换至推理模式(可选)
  • 也可以同时保存模型 + 参数
# 保存整个模型
torch.save(model, "full_model.pth")# 加载模型(无需提前定义类,但需确保环境一致)
model = torch.load("full_model.pth")
model.eval()  # 切换至推理模式(可选)
  • 保存训练状态,用于在训练过程中保存中间状态
# # 保存训练状态
# checkpoint = {
#     "model_state_dict": model.state_dict(),
#     "optimizer_state_dict": optimizer.state_dict(),
#     "epoch": epoch,
#     "loss": best_loss,
# }
# torch.save(checkpoint, "checkpoint.pth")# # 加载并续训
# model = MLP()
# optimizer = torch.optim.Adam(model.parameters())
# checkpoint = torch.load("checkpoint.pth")# model.load_state_dict(checkpoint["model_state_dict"])
# optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
# start_epoch = checkpoint["epoch"] + 1  # 从下一轮开始训练
# best_loss = checkpoint["loss"]# # 继续训练循环
# for epoch in range(start_epoch, num_epochs):
#     train(model, optimizer, ...)
  • 对于跨框架保存时,需要保存为onnx文件
  • 早停策略:在训练过程中,训练集的损失不断下降,但是验证集或者测试集的损失反而上升,此时这种情况称为过拟合;针对这种情况,我们可以引入早停策略,用于提前终止训练;
  • 可以在训练达到某一个epoch次数时进行一次验证,将此次结果和历史最佳结果进行比较,如果结果更好则保留,如果不好则会使临时记录变量自增,一旦连续自增到预设值,直接停止。这种设计是为了防止出现震荡波动情况,避免偶然性
  • 可以结合上面的保存断点 breakpoint
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt
from tqdm import tqdm  # 导入tqdm库用于进度条显示
import warnings
warnings.filterwarnings("ignore")  # 忽略警告信息# 设置GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 归一化数据
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)# 将数据转换为PyTorch张量并移至GPU
X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 实例化模型并移至GPU
model = MLP().to(device)# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 20000  # 训练的轮数# 用于存储每200个epoch的损失值和对应的epoch数
train_losses = []  # 存储训练集损失
test_losses = []   # 存储测试集损失
epochs = []# ===== 新增早停相关参数 =====
best_test_loss = float('inf')  # 记录最佳测试集损失
best_epoch = 0                 # 记录最佳epoch
patience = 50                # 早停耐心值(连续多少轮测试集损失未改善时停止训练)
counter = 0                    # 早停计数器
early_stopped = False          # 是否早停标志
# ==========================start_time = time.time()  # 记录开始时间# 创建tqdm进度条
with tqdm(total=num_epochs, desc="训练进度", unit="epoch") as pbar:# 训练模型for epoch in range(num_epochs):# 前向传播outputs = model(X_train)  # 隐式调用forward函数train_loss = criterion(outputs, y_train)# 反向传播和优化optimizer.zero_grad()train_loss.backward()optimizer.step()# 记录损失值并更新进度条if (epoch + 1) % 200 == 0:# 计算测试集损失model.eval()with torch.no_grad():test_outputs = model(X_test)test_loss = criterion(test_outputs, y_test)model.train()train_losses.append(train_loss.item())test_losses.append(test_loss.item())epochs.append(epoch + 1)# 更新进度条的描述信息pbar.set_postfix({'Train Loss': f'{train_loss.item():.4f}', 'Test Loss': f'{test_loss.item():.4f}'})# ===== 新增早停逻辑 =====if test_loss.item() < best_test_loss: # 如果当前测试集损失小于最佳损失best_test_loss = test_loss.item() # 更新最佳损失best_epoch = epoch + 1 # 更新最佳epochcounter = 0 # 重置计数器# 保存最佳模型torch.save(model.state_dict(), 'best_model.pth')else:counter += 1if counter >= patience:print(f"早停触发!在第{epoch+1}轮,测试集损失已有{patience}轮未改善。")print(f"最佳测试集损失出现在第{best_epoch}轮,损失值为{best_test_loss:.4f}")early_stopped = Truebreak  # 终止训练循环# ======================# 每1000个epoch更新一次进度条if (epoch + 1) % 1000 == 0:pbar.update(1000)  # 更新进度条# 确保进度条达到100%if pbar.n < num_epochs:pbar.update(num_epochs - pbar.n)  # 计算剩余的进度并更新time_all = time.time() - start_time  # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')# ===== 新增:加载最佳模型用于最终评估 =====
if early_stopped:print(f"加载第{best_epoch}轮的最佳模型进行最终评估...")model.load_state_dict(torch.load('best_model.pth'))
# ================================# 可视化损失曲线
plt.figure(figsize=(10, 6))
plt.plot(epochs, train_losses, label='Train Loss')
plt.plot(epochs, test_losses, label='Test Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Test Loss over Epochs')
plt.legend()
plt.grid(True)
plt.show()# 在测试集上评估模型
model.eval()
with torch.no_grad():outputs = model(X_test)_, predicted = torch.max(outputs, 1)correct = (predicted == y_test).sum().item()accuracy = correct / y_test.size(0)print(f'测试集准确率: {accuracy * 100:.2f}%')    
http://www.lryc.cn/news/612720.html

相关文章:

  • 【AI】——SpringAI通过Ollama本地部署的Deepseek模型实现一个对话机器人(二)
  • 数据结构(循环顺序队列)
  • java 生成pdf导出
  • iOS 文件管理实战指南,用户文件、安全访问与开发调试方案
  • OpenCv对图片视频的简单操作
  • Flutter 局部刷新方案对比:ValueListenableBuilder vs. GetBuilder vs. Obx
  • PPT漏斗图,让数据更美观!
  • OpenAI重磅发布:GPT最新开源大模型gpt-oss系列全面解析
  • 【沉浸式解决问题】mysql-connector-python连接数据库:RuntimeError: Failed raising error.
  • 计算机视觉(opencv)——图像本质、数字矩阵、RGB + 基本操作(实战一)
  • Java面试宝典:JVM的垃圾收集算法
  • Linux中chmod命令
  • JAVA,Maven分模块设计
  • 初识C++类的6个默认成员函数
  • 模拟-38.外观数列-力扣(LeetCode)
  • 【数据库】如何从本地电脑连接服务器上的MySQL数据库?
  • 国内主流数据集成厂商有哪些?有那些免费的数据集成平台?
  • 【Java】Predicate使用案例
  • 【CS创世SD NAND征文】额贴式睡眠监测仪的数据守护者:存储芯片如何实现7×24小时安眠状态下的全时稳定记录
  • Nuclei漏洞扫描工具(除了常见漏洞还支持CMS常见漏洞Gitlab、Jira、Splunk、Elastic)
  • 2025年主流开源音视频播放项目深度解析
  • Java技术栈/面试题合集(20)-运维与线上问题排查篇
  • nvm安装,nvm管理node版本
  • 【数据结构初阶】--排序(五)--计数排序,排序算法复杂度对比和稳定性分析
  • MATLAB科研数据可视化
  • 【CDA案例】数据分析案例拆解:解锁数据分析全流程!
  • 图像认知与OpenCV——图像预处理4
  • 计算机视觉--opencv(代码详细教程)
  • Java垃圾回收(GC)探析
  • 网络可视,运维无忧:分钟级定位,告别盲目扩容