当前位置: 首页 > news >正文

【数据统计】— 极大似然估计 MLE、最大后验估计 MAP、贝叶斯估计

【数据统计】— 极大似然估计 MLE、最大后验估计 MAP、贝叶斯估计

  • 极大似然估计、最大后验概率估计(MAP),贝叶斯估计
    • 极大似然估计(Maximum Likelihood Estimate,MLE)
      • MLE目标
      • 例子: 扔硬币
      • 极大似然估计—高斯分布的参数
  • 矩估计 vs LSE vs MLE
    • 贝叶斯公式:

极大似然估计、最大后验概率估计(MAP),贝叶斯估计

极大似然估计(Maximum Likelihood Estimate,MLE)

  • 思想:利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值
  • 模型已定,参数未知
  • 目标:概率分布函数或者似然函数最大
    • 用似然函数取到最大值时的参数值作为估计值
  • 概率分布模型
    • 伯努利分布
    • 二项分布
    • 高斯分布
    • 泊松分布
      在这里插入图片描述

MLE目标

  • 目标:用似然函数取到最大值时的参数值作为估计值
  • 设总体分布为𝑓 𝑋 𝜃 ,𝑥1, 𝑥2, 𝑥3, ⋯,𝑥𝑁为样本。样本满足独立同分布,则他们的联合密度函数为:在这里插入图片描述
  • 其中,𝜃为未知参数。样本已经存在(观测),即,𝑥1, 𝑥2, 𝑥3, ⋯,𝑥𝑛是固定的。 L(𝑋|𝜃)是关于𝜃的函数,称为似然函数
  • 目标:求参数𝜃,使似然函数取极大值,称为极大似然估计
  • 实践中,通常对似然函数取对数(log或ln)(连乘运算变为连加运算),即对数似然函数。所以,极大似然估计问题可以写成在这里插入图片描述

例子: 扔硬币

  • X每次实验𝑋𝑖服从伯努利分布
    • 参数为𝜽,假设为事件(正面向上)发生的概率在这里插入图片描述
  • n次实验,共k次正面向上,采用MLE估计参数𝜽:在这里插入图片描述在这里插入图片描述

极大似然估计—高斯分布的参数

  • 例:给定𝑥1, 𝑥2, 𝑥3, ⋯,𝑥𝑁为样本,已知样本来自于高斯分布 𝑁 𝜇, 𝜎 ,估计参数𝜇,𝜎在这里插入图片描述

矩估计 vs LSE vs MLE

贝叶斯公式:

在这里插入图片描述

  • 它将后验概率转化为基于似然函数和先验概率的计算表达式:在这里插入图片描述
http://www.lryc.cn/news/60445.html

相关文章:

  • Zookeeper学习笔记
  • go语言切片做函数参数传递+append()函数扩容
  • 2023.04.16 学习周报
  • 【面试】如何设计SaaS产品的数据权限?
  • ansible管理变量
  • 一种轻量级日志采集解决方案
  • 【源码】Spring Cloud Gateway 是在哪里匹配路由的?
  • BAT批处理基本命令
  • Python数组仿射变换
  • “==“和equals方法究竟有什么区别?
  • 蓝桥杯15单片机--超声波模块
  • 【学习笔记】ARC159
  • 2023/4/16总结
  • 【剑指offer】常用的数据增强的方法
  • /lib/lsb/init-functions文件解析
  • 【ChatGPT】ChatGPT-5 强到什么地步?
  • [ARM+Linux] 基于全志h616外设开发笔记
  • 如何实现24小时客户服务
  • 查询数据库空间(mysql和oracle)
  • 为什么 SQLite 一定要用 C 语言来开发?
  • TensorFlow Lite,ML Kit 和 Flutter 移动深度学习:6~11
  • 你的GPT跟ChatGPT可能只差了一个DPU
  • springboot服务端接口外网远程调试,并实现HTTP服务监听 - 内网穿透
  • NumPy的应用-1
  • k8s的yaml文件中kind类型详解
  • 第三天:C语言控制结构
  • 访问若依vue版后端api接口
  • 另一种迁移xxl-job任务的方法,适合不满足数据迁移条件
  • Redis缓存穿透、击穿、雪崩面试题详解
  • 【网络安全】本地提权漏洞分析