MIT线性代数01_方程组的几何解释
Linear Algebra
Lecture #1
W. Gilbert Strang
n linear equations, n unknowns
- row picture
- col picture
- Matrix form
{2x−y=0−x+2y=3 \left\{\begin{matrix} 2x - y = 0 \\ -x + 2y = 3 \end{matrix}\right. {2x−y=0−x+2y=3
1 Row Picture
2 Column Picture
What are all combinations ? The whole plane.
3 Matrix form
matrix form:
$$
\begin{bmatrix}
2 & -1 \
-1 & 2 \
\end{bmatrix}
\begin{bmatrix}
x \
y \
\end{bmatrix}
\begin{bmatrix}
0 \
3 \
\end{bmatrix}
$$
AX=bAX=bAX=b
4 3 unknowns and 3 equations
5 Can I solve Ax=bAx=bAx=b for every b ?
Do the linear combinations of the columns fill three dimentional space ?
A non-singular matrix or an invertible matrix.
非奇异矩阵 (又称 可逆矩阵 或 正则矩阵) 是一种存在逆元的方块矩阵。相反的,若方阵不存在逆元,则称为 奇异矩阵。
Ax=bAx=bAx=b
$$
\begin{bmatrix}
2 & 5 \
1 & 3 \
\end{bmatrix}
\begin{bmatrix}
1 \
2
\end{bmatrix}
1
\begin{bmatrix}
2 \
1
\end{bmatrix}
+
2
\begin{bmatrix}
5 \
3
\end{bmatrix}
\begin{bmatrix}
12 \
7
\end{bmatrix}
$$