Python进阶第三方库之Numpy
了解Numpy运算速度上的优势
知道数组的属性,形状、类型
应用Numpy实现数组的基本操作
应用随机数组的创建实现正态分布应用
应用Numpy实现数组的逻辑运算
应用Numpy实现数组的统计运算
应用Numpy实现数组之间的运算
一、Numpy优势
Numpy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组。
Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多。
Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。
NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。
用ndarray进行存储:
import numpy as np
# 创建ndarray
score = np.array(
[[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])
score
返回结果:
array([[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])
ndarray与Python原生list运算效率对比
在这里我们通过一段代码运行来体会到ndarray的好处
import random
import time
import numpy as np
a = []
for i in range(100000000):
a.append(random.random())
# 通过%time魔法方法, 查看当前行的代码运行一次所花费的时间
%time sum1=sum(a)
b=np.array(a)
%time sum2=np.sum(b)
其中第一个时间显示的是使用原生Python计算时间,第二个内容是使用numpy计算时间:
CPU times: user 852 ms, sys: 262 ms, total: 1.11 s
Wall time: 1.13 s
CPU times: user 133 ms, sys: 653 µs, total: 133 ms
Wall time: 134 ms
从中我们看到ndarray的计算速度要快很多,节约了时间。
Numpy专门针对ndarray的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优 势就越明显。
二、效率远高于纯Python代码
Numpy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,所以,其效率远高于纯 Python代码。
ndarray的属性
属性名字 属性解释
数组维度的元组 ndarray.shape
数组维数 ndarray.ndim
数组中的元素数量 ndarray.size
一个数组元素的长度(字节) ndarray.itemsize
数组元素的类型 ndarray.dtype
ndarray的形状
首先创建一些数组。
# 创建不同形状的数组
>>> a = np.array([[1,2,3],[4,5,6]])
>>> b = np.array([1,2,3,4])
>>> c = np.array([[[1,2,3],[4,5,6]],[[1,2,3],[4,5,6]]])
分别打印出形状
>>> a.shape
>>> b.shape
>>> c.shape
(2, 3) # 二维数组
(4,) # 一维数组
(2, 2, 3) # 三维数组
ndarray的类型
>>> type(score.dtype)
<type 'numpy.dtype'>
创建数组的时候指定类型
注意:若不指定,整数默认int64,小数默认float64
三、生成数组的方法
生成0和1的数组
np.ones(shape, dtype)
np.ones_like(a, dtype)
np.zeros(shape, dtype)
np.zeros_like(a, dtype)
ones = np.ones([4,8])
ones
返回结果:
array([[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.]])
np.zeros_like(ones)
返回结果:
array([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])
从现有数组生成
生成方式
np.array(object, dtype)
np.asarray(a, dtype)
a = np.array([[1,2,3],[4,5,6]])
# 从现有的数组当中创建
a1 = np.array(a)
# 相当于索引的形式,并没有真正的创建一个新的
a2 = np.asarray(a)
关于array和asarray的不同

生成固定范围的数组
np.linspace (start, stop, num, endpoint)
创建等差数组 — 指定数量
参数:
start:序列的起始值
stop:序列的终止值
num:要生成的等间隔样例数量,默认为50
endpoint:序列中是否包含stop值,默认为ture
# 生成等间隔的数组
np.linspace(0, 100, 11)
返回结果:
array([ 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100.])
np.arange(start,stop, step, dtype)
创建等差数组 — 指定步长
参数
step:步长,默认值为1
np.arange(10, 50, 2)
返回结果:
array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,44, 46, 48])
np.logspace(start,stop, num)
创建等比数列
参数:
num:要生成的等比数列数量,默认为50
# 生成10^x
np.logspace(0, 2, 3)
返回结果:
array([ 1., 10., 100.])
生成随机数组
使用模块介绍
np.random模块
np.random.randn(d0, d1, …, dn)
功能:从标准正态分布中返回一个或多个样本值
np.random.normal(loc=0.0, scale=1.0, size=None)
loc:float
此概率分布的均值(对应着整个分布的中心centre)
scale:float
此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高)
size:int or tuple of ints
输出的shape,默认为None,只输出一个值
np.random.standard_normal(size=None)
返回指定形状的标准正态分布的数组。
举例1:生成均值为1.75,标准差为1的正态分布数据,100000000个
x1 = np.random.normal(1.75, 1, 100000000)
返回结果:
array([2.90646763, 1.46737886, 2.21799024, ..., 1.56047411, 1.87969135,
0.9028096 ])
均匀分布
np.random.rand(d0, d1, ..., dn)
返回[0.0,1.0)内的一组均匀分布的数。
np.random.uniform(low=0.0, high=1.0, size=None)
功能:从一个均匀分布[low,high)中随机采样,注意定义域是左闭右开,即包含low,不包含high.
参数介绍:
low: 采样下界,float类型,默认值为0;
high: 采样上界,float类型,默认值为1;
size: 输出样本数目,为int或元组(tuple)类型,例如,size=(m,n,k), 则输出mnk个样本,缺省时输出1个值。
返回值:ndarray类型,其形状和参数size中描述一致。
np.random.randint(low, high=None, size=None, dtype='l')
从一个均匀分布中随机采样,生成一个整数或N维整数数组,
取数范围:若high不为None时,取[low,high)之间随机整数,否则取值[0,low)之间随机整数。
# 生成均匀分布的随机数
x2 = np.random.uniform(-1, 1, 100000000)
返回结果:
array([ 0.22411206, 0.31414671, 0.85655613, ..., -0.92972446,
0.95985223, 0.23197723])
四、数组的索引、切片
一维、二维、三维的数组如何索引?
直接进行索引,切片
对象[:, :] -- 先行后列
二维数组索引方式:
举例:获取第一个股票的前3个交易日的涨跌幅数据
# 二维的数组,两个维度
stock_change[0, 0:3]
返回结果:
array([-0.03862668, -1.46128096, -0.75596237])
三维数组索引方式:
# 三维
a1 = np.array([ [[1,2,3],[4,5,6]], [[12,3,34],[5,6,7]]])
# 返回结果
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[12, 3, 34],
[ 5, 6, 7]]])
# 索引、切片
>>> a1[0, 0, 1] # 输出: 2
形状修改
ndarray.reshape(shape, order)
返回一个具有相同数据域,但shape不一样的视图
行、列不进行互换
# 在转换形状的时候,一定要注意数组的元素匹配
stock_change.reshape([5, 4])
stock_change.reshape([-1,10]) # 数组的形状被修改为: (2, 10), -1: 表示通过待计算
ndarray.resize(new_shape)
修改数组本身的形状(需要保持元素个数前后相同)
行、列不进行互换
stock_change.resize([5, 4])
# 查看修改后结果
stock_change.shape
(5, 4)
ndarray.T
数组的转置
将数组的行、列进行互换
stock_change.T.shape
(4, 5)