当前位置: 首页 > news >正文

详解 F.cross_entropy 与标签平滑的工作原理

F.cross_entropy(sim_i2t, targets, label_smoothing=0.1) 是医学图像 - 文本匹配任务中常用的损失函数计算方式,结合了交叉熵损失和标签平滑技术。这个函数的计算过程涉及多个关键步骤,下面我将详细拆解。

一、核心概念解析

1. 输入参数含义
  • sim_i2t:图像到文本的相似度矩阵,形状通常为 [batch_size, num_classes]
    • 在医学场景中,可能是图像与不同诊断类别的匹配分数
  • targets:真实标签索引,形状为 [batch_size]
    • 例如:[0, 2, 1] 表示三个样本分别属于类别 0、2、1
  • label_smoothing:标签平滑系数(0.1 表示将 10% 的概率质量分配给其他类别)
2. 交叉熵损失的基本公式

对于单个样本,交叉熵损失为:

  • p:真实概率分布(通常是 one-hot 向量)
  • q:模型预测的概率分布(通过 softmax 转换后的结果)

二、标签平滑(Label Smoothing)的作用

1. 传统交叉熵的问题
  • 强制模型对正确类别输出概率为 1,可能导致过拟合
  • 在医学场景中,这种 "绝对确信" 可能不符合实际诊断逻辑(如存在不确定性)
2. 标签平滑的改进

将真实标签从硬 one-hot 向量转换为软分布:

三、计算流程详解

1. 示例输入

假设:

  • 批次大小 = 2,类别数 = 3
  • sim_i2t(未归一化的相似度分数):
    tensor([[2.0, 1.0, 0.1],[0.5, 1.5, 0.8]])

    targets(真实标签):

    tensor([0, 1])
  • label_smoothing=0.1
2. 步骤 1:应用 softmax 将分数转换为概率

计算结果:

q = tensor([[0.6590, 0.2424, 0.0986],[0.1863, 0.6681, 0.1456]])
3. 步骤 2:构建平滑后的标签分布

对于第一个样本(真实标签 0):

对于第二个样本(真实标签 1):

平滑后的标签分布:

p_smooth = tensor([[0.9333, 0.0333, 0.0333],[0.0333, 0.9333, 0.0333]])
4. 步骤 3:计算每个样本的平滑交叉熵

5. 步骤 4:取批次平均

四、医学场景中的实际应用

1. 诊断不确定性建模

在医学诊断中,疾病可能存在重叠症状,标签平滑允许模型学习到这种不确定性:

  • 例如:肺炎和支气管炎可能有相似的影像学表现
2. 缓解小样本过拟合

医学数据集通常较小,标签平滑可以减少对训练样本的过拟合:

  • 通过降低对 "绝对正确" 的追求,提高模型泛化能力
3. 多模态一致性学习

在图像 - 文本匹配任务中,标签平滑可以:

  • 减轻文本描述中的语言歧义影响
  • 鼓励模型学习更鲁棒的跨模态表示

五、代码验证

import torch
import torch.nn.functional as F# 示例输入
sim_i2t = torch.tensor([[2.0, 1.0, 0.1],[0.5, 1.5, 0.8]])
targets = torch.tensor([0, 1])# 使用PyTorch函数计算
loss_pytorch = F.cross_entropy(sim_i2t, targets, label_smoothing=0.1)
print(f"PyTorch计算的损失: {loss_pytorch.item():.4f}")# 手动实现标签平滑交叉熵
def label_smoothing_cross_entropy(sim, targets, epsilon=0.1):# 应用softmaxlog_probs = F.log_softmax(sim, dim=1)# 获取类别数num_classes = sim.size(1)# 构建平滑后的标签one_hot = torch.zeros_like(log_probs).scatter(1, targets.unsqueeze(1), 1)smooth_labels = one_hot * (1 - epsilon) + (epsilon / num_classes)# 计算损失loss = (-smooth_labels * log_probs).sum(dim=1).mean()return loss# 验证手动实现
loss_manual = label_smoothing_cross_entropy(sim_i2t, targets, epsilon=0.1)
print(f"手动计算的损失: {loss_manual.item():.4f}")
输出结果
PyTorch计算的损失: 0.4122
手动计算的损失: 0.4122

六、总结

F.cross_entropy(sim_i2t, targets, label_smoothing=0.1) 的计算流程:

  1. 对相似度分数应用 softmax,得到预测概率分布
  2. 根据标签平滑策略修改真实标签分布
  3. 计算平滑后的交叉熵损失
  4. 对批次内所有样本取平均

在医学 AI 中,标签平滑特别有用,因为:

  • 医学诊断本身存在不确定性
  • 小样本数据集容易过拟合
  • 鼓励模型学习更泛化的特征表示

合理调整 label_smoothing 参数(通常在 0.0-0.2 之间)可以显著提升医学图像分析模型的性能和鲁棒性。

http://www.lryc.cn/news/595261.html

相关文章:

  • Day07_网络编程20250721(网络编程考试试卷)
  • 比特币技术简史 第五章:交易机制 - UTXO模型、脚本系统与多重签名
  • PyCharm 未正确关联 .jpg 为图片格式
  • 玩转Rocky Linux 9 部署Redis指南
  • Jmeter如何做接口测试?
  • 前端之学习后端java小白(一)之SDKMAN
  • JavaScript的引入方式和基础语法的快速入门与学习
  • DigitalOcean 云平台上线 AMD MI325X GPU Droplet 服务器
  • 网站域名备案和服务器有关系吗
  • 解决OpenHarmony中找不到pthread_cancel和pthread_setcanceltype等libc符号的问题
  • Shell判断结构
  • 5道挑战题writup
  • 中文分词模拟器 - 华为OD统一考试(Java 题解)
  • macbookpro m1 max本儿上速搭一个elasticsearch+kibana环境
  • 在 React 中实现全局防复制hooks
  • MySQL表的基础操作
  • 鸿蒙DevEco Studio找不到JsonFormat插件
  • 虚拟机扩展磁盘容量后扩展分区大小
  • Linux的磁盘存储管理实操——(中)——逻辑卷管理实战
  • Linux find命令:强大的文件搜索工具
  • Apache Ignite Binary Object Restrictions
  • 青少年科学世界名刊分析评介:《生物技术世界》
  • 从 C# 到 Python:项目实战第五天的飞跃
  • Django视图与路由系统
  • 深入解析 Linux 硬链接与软链接:原理、区别及应用场景
  • 可编辑54页PPT | 智慧工业大数据建设方案智慧工厂整体解决方案
  • Git 常用命令与操作步骤
  • 深入理解 消息队列 与 ZeroMQ
  • C语言:20250721笔记
  • 板凳-------Mysql cookbook学习 (十二--------3_1)